Skip to main content

bugs - Series expansion wrong


I had to work with some series expansions lately, and at some point I realised that something was becoming inconsistent at some point. It seems that applying Factor broke my series expansions. Here's a minimal example extracted from my computations.


Consider the following expression



test =   Sqrt[1/(1 - x)] (Sqrt[1/(1 - x)] + 1) + 1;

Now look at those series expansions of test around x=1:


ser1 = Series[test // Factor, {x, 1, -1}]
ser2 = Series[test, {x, 1, -1}]

Not only are ser1 and ser2 different, but what's worse is that


ser2 - ser1

gives 1/(x-1) + O(x-1)^0. At this point I would have expected O(x-1)^0, how come Factor can break a series expansion so much? Is this sort of behaviour a feature or a bug?





The problem seems to be in ser2, if one looks at List@@ser2 one realises that ser2 is saved as a0+O(x-1)^2 with a0 containing x, this seems to be the root of all evil.


Interestingly, if one alters test to


test =   1/Sqrt[(1 - x)] (1/Sqrt[(1 - x)] + 1) + 1;

which is really not much of a change, one obtains a different result. Given this instability, I don't know how I should trust the series expansions at all.




Here's a similar, but more subtle computation, which leads to two different results. Let's add 1/(1-x) to test


test =  1/(1 - x) + 1/Sqrt[1 - x] (1/Sqrt[1 - x] + 1) + 1;
ser1 = Series[test // Factor, {x, 1, -1}];

ser2 = Series[test, {x, 1, -1}];

and compute


Limit[(1 - x) ser1, x -> 1] (* = 2 *)
Limit[(1 - x) ser2, x -> 1] (* = 1 *)

In a realistic scenario test would be much more complicated, and I wouldn't compute both ser1 and ser2 and then compare, but just one of them. So there's a 50/50 chance that I'd obtain a wrong result without being aware of it.




Mathematica Version : 11.1 .0 .0


Platform : Mac OS X x86 (32-bit, 64-bit kernel)





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]