Skip to main content

How to deal with the condition $u_i=u_{i+1}$ in B-Spline basis function?


The defintion of B-Spline basis function as shown below:


Let $\vec{U}=\{u_0,u_1,\ldots,u_m\}$ a nondecreasing sequence of real numbers,i.e, $u_i\leq u_{i+1}\quad i=0,1,2\ldots m-1$


$$N_{i,0}(u)= \begin{cases} 1 & u_i\leq u

Although I know that Mathematica owns a built-in function BSplineBasis, however, I would like to write my auxiliay function $N_{i,p}(u)$ to learn the NURBS theory and Mathematica programming.


NBSpline


Alogrithm:




enter image description here



 (*=======================Caculate N[i,0](u)================================*)
NBSpline[i_Integer, 0, u_Symbol, U : {Sequence[_] ..}] /;
i <= Length[U] - 2 :=
Piecewise[
{{1, U[[i + 1]] <= u < U[[i + 2]]},
{0, u < U[[i + 1]] || u >= U[[i + 2]]}}]


(*=======================Caculate N[i,p](u)================================*)

NBSpline[i_Integer, p_Integer, u_Symbol, U : {Sequence[_] ..}?OrderedQ] /;
p > 0 && i + p <= Length[U] - 2 :=
Module[{ini},
ini = Table[NBSpline[j, 0, u, U], {j, i, i + p}];
First@Simplify@
Nest[
Dot @@@
(Thread@

{Partition[#, 2, 1],
With[{m = i + p - Length@# + 1},
Table[
{(u - U[[k + 1]])/(U[[k + m + 1]] - U[[k + 1]]),
(U[[k + m + 2]] - u)/(U[[k + m + 2]] - U[[k + 2]])}, {k, i, i + Length@# - 2}]]}) &,
ini, p]
]

Test


NBSpline[1, 3, u, {1, 2, 3, 4, 5, 7}] // TraditionalForm



enter image description here



In my function NBSpline I avoid the condition $u_i=u_{i+1}$, because it will occured the case $\frac{0}{0}$


In the book "The NURBS book", it defines this quotient $\frac{0}{0}$ to be zero.


Question


How to deal with the condition $\frac{0}{0}$ that I sometimes need to set it to 0 ? Namely, How to deal with the condition $u_i=u_{i+1}$ in B-Spline basis function?



Answer



Here is one way to deal with repeated entries in U. One can define a function to compute the coefficient, using one rule when $u_i = u_j$ and the general formula otherwise. One might put extra conditions on the patterns in coeff below, but if the function is called only within NBSpline, then one might assume the conditions are met.



ClearAll[coeff];
coeff[u_, i_, j_, U_] /; U[[i]] == U[[j]] := 0;
coeff[u_, i_, j_, U_] := (u - U[[i]])/(U[[j]] - U[[i]])

Then change the definition of NBSpline for p != 0 as follows.


NBSpline[i_Integer, p_Integer, u_Symbol, 
U : {Sequence[_] ..}?OrderedQ] /; p > 0 && i + p <= Length[U] - 2 :=
Module[{ini}, ini = Table[NBSpline[j, 0, u, U], {j, i, i + p}];
First@Simplify@
Nest[Dot @@@ (Thread@{Partition[#, 2, 1],

With[{m = i + p - Length@# + 1},
Table[{
coeff[u, k + 1, k + m + 1, U],
coeff[u, k + m + 2, k + 2, U]},
{k, i, i + Length@# - 2}]]}) &, ini, p]]

Example:


NBSpline[1, 3, u, {1, 2, 2, 4, 5, 7}]

Mathematica graphics



The output of NBSpline[1, 3, u, {1, 2, 3, 4, 5, 7}] agrees with the output in the question.


P.S. The pattern U : {Sequence[_] ..}?OrderedQ is equivalent to U_List?OrderedQ. You might want a check that restricts U to be a list of numbers, since an ordered list of symbols such as {a, b, c} passes the OrderedQ test. The pattern U_?(VectorQ[#, NumericQ] && OrderedQ[#] &) is one way.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...