Skip to main content

plotting - How to access box-and-whisker specifications from custom ChartElementFunction?


I am creating a custom ChartElementFunction for BoxWhiskerChart. I would like to access the box-and-whisker specifications from the second parameter of BoxWhiskerChart to use in the custom function; just as the built-in element functions. Minimal custom element function:


ClearAll[cef];
cef[boundingBox_, data_, meta_] :=
Module[{qt = Quantile[data, {0, 0.25, .5, 0.75, 1}, {{1/2, 0}, {0, 1}}],
h = First@Differences@boundingBox[[2]],
m = Mean@boundingBox[[2]]},

{
{Thickness[.005], CapForm["Butt"], Blue,
Line[{
{qt[[1]], m - .1 h},
{qt[[1]], m + .1 h}}]},
{Thickness[.005], CapForm["Butt"], Magenta,
Line[{
{qt[[5]], m - .1 h},
{qt[[5]], m + .1 h}}]}
}

]

Minimal example where the fences are drawn different colours. The box-and-whisker "Fences" specification says to draw them 80% of the height of the box-whisker. However, I don't have access to this and have to hard-code a value (in this case 20% of the height). The regular element function is added to cut down on the size of the post.


SeedRandom[953];
data = RandomVariate[ChiSquareDistribution[5], 100];
BoxWhiskerChart[data, {"Basic", {"Fences", .8, None}},
BarOrigin -> Left,
ChartElementFunction -> ({cef[##], ChartElementDataFunction["BoxWhisker"][##]} &)]

enter image description here



Can the second parameter box-and-whisker specifications be accessed in a custom ChartElementFunction as they are in the built-in ones? I would prefer not to move the specifications into a parameter of the custom function.



Answer



Inspecting the code for the function System`BarFunctionDump`boxplot, it looks like you can access the fence specs -- (.8, None) in your example -- using Charting`ChartStyleInformation["Fence"] inside your cef.


More generally, all box and whiskers specifications, "Color", "BarOrigin", "Outliers", "BoxRange" etc., can be accessed using Charting`ChartStyleInformation.


ClearAll[cef];
cef[boundingBox_, data_, meta_] :=
Module[{qt =
Quantile[data, {0, 0.25, .5, 0.75, 1}, {{1/2, 0}, {0, 1}}],
h = First@Differences@boundingBox[[2]],
m = Mean@boundingBox[[2]]}, {{Thickness[.005], CapForm["Butt"],

Blue, Print /@ (Row[{#, " = ", Charting`ChartStyleInformation[#]}] & /@
{"Color", "BarOrigin", "Outliers", "BoxRange", "MedianConfInt", "MeanConfInt",
"Whisker", "Fence", "MedianMarker", "MeanMarker", "MedianConfIntPara"}),
Line[{{qt[[1]], m - .1 h}, {qt[[1]],
m + .1 h}}]}, {Thickness[.005], CapForm["Butt"], Magenta,
Line[{{qt[[5]], m - .1 h}, {qt[[5]], m + .1 h}}]}}]



SeedRandom[953];


data = RandomVariate[ChiSquareDistribution[5], 100];
BoxWhiskerChart[data, {"Basic", {"Fences", .8, None},
{"Outliers", "A", Green}, {"FarOutliers", "B", Orange}},
BarOrigin -> Left,
ChartElementFunction -> ({cef[##], ChartElementDataFunction["BoxWhisker"][##]} &)]

Mathematica graphics


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....