Skip to main content

plotting - How to access box-and-whisker specifications from custom ChartElementFunction?


I am creating a custom ChartElementFunction for BoxWhiskerChart. I would like to access the box-and-whisker specifications from the second parameter of BoxWhiskerChart to use in the custom function; just as the built-in element functions. Minimal custom element function:


ClearAll[cef];
cef[boundingBox_, data_, meta_] :=
Module[{qt = Quantile[data, {0, 0.25, .5, 0.75, 1}, {{1/2, 0}, {0, 1}}],
h = First@Differences@boundingBox[[2]],
m = Mean@boundingBox[[2]]},

{
{Thickness[.005], CapForm["Butt"], Blue,
Line[{
{qt[[1]], m - .1 h},
{qt[[1]], m + .1 h}}]},
{Thickness[.005], CapForm["Butt"], Magenta,
Line[{
{qt[[5]], m - .1 h},
{qt[[5]], m + .1 h}}]}
}

]

Minimal example where the fences are drawn different colours. The box-and-whisker "Fences" specification says to draw them 80% of the height of the box-whisker. However, I don't have access to this and have to hard-code a value (in this case 20% of the height). The regular element function is added to cut down on the size of the post.


SeedRandom[953];
data = RandomVariate[ChiSquareDistribution[5], 100];
BoxWhiskerChart[data, {"Basic", {"Fences", .8, None}},
BarOrigin -> Left,
ChartElementFunction -> ({cef[##], ChartElementDataFunction["BoxWhisker"][##]} &)]

enter image description here



Can the second parameter box-and-whisker specifications be accessed in a custom ChartElementFunction as they are in the built-in ones? I would prefer not to move the specifications into a parameter of the custom function.



Answer



Inspecting the code for the function System`BarFunctionDump`boxplot, it looks like you can access the fence specs -- (.8, None) in your example -- using Charting`ChartStyleInformation["Fence"] inside your cef.


More generally, all box and whiskers specifications, "Color", "BarOrigin", "Outliers", "BoxRange" etc., can be accessed using Charting`ChartStyleInformation.


ClearAll[cef];
cef[boundingBox_, data_, meta_] :=
Module[{qt =
Quantile[data, {0, 0.25, .5, 0.75, 1}, {{1/2, 0}, {0, 1}}],
h = First@Differences@boundingBox[[2]],
m = Mean@boundingBox[[2]]}, {{Thickness[.005], CapForm["Butt"],

Blue, Print /@ (Row[{#, " = ", Charting`ChartStyleInformation[#]}] & /@
{"Color", "BarOrigin", "Outliers", "BoxRange", "MedianConfInt", "MeanConfInt",
"Whisker", "Fence", "MedianMarker", "MeanMarker", "MedianConfIntPara"}),
Line[{{qt[[1]], m - .1 h}, {qt[[1]],
m + .1 h}}]}, {Thickness[.005], CapForm["Butt"], Magenta,
Line[{{qt[[5]], m - .1 h}, {qt[[5]], m + .1 h}}]}}]



SeedRandom[953];


data = RandomVariate[ChiSquareDistribution[5], 100];
BoxWhiskerChart[data, {"Basic", {"Fences", .8, None},
{"Outliers", "A", Green}, {"FarOutliers", "B", Orange}},
BarOrigin -> Left,
ChartElementFunction -> ({cef[##], ChartElementDataFunction["BoxWhisker"][##]} &)]

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]