Skip to main content

bugs - Why does one of my Manipulate integer variables get turned into a real?


Bug introduced in 9.0 or earlier and persisting through 11.0.1 or later




I'm developing code for manipulating graphs. Spot the difference in the 2 Manipulates below:


Manipulate[

{n, m},
{{n, 10, "no of vertices"}, 1, 18, 1},
{{m, n, "number of edges"}, n, n (n - 1)/2 , 1}
(* using the +/-/slider for the number of edges does not generate Reals
but only Integers as expected *)]

first image of Manipulate


this first example works as expected but


Manipulate[
{n, m},

{{n, 10, "no of vertices"}, 1, 18, 1},
{{m, n, "number of edges"}, n - 1, n (n - 1) /2, 1}
(* using the +/-/slider for the number of edges now generates Reals
not Integers: what gives? *)]

second image of Manipulate


turns my nice integers into reals as soon as I change the number of edges. I can turn this back into an integer when that's what I need, but I'd prefer not to. Naturally I have a more complex task to complete but these examples are simple enough to illustrate the issue.


Version: Mathematica 9.0.1.0


Platform: Mac



Answer




This is an example of unintended behavior in Mathematica that the developers are aware of. There are a number of workarounds. The simplest is to wrap a function around the appropriate bounds; instead of


Manipulate[m, {n, {10}}, {m, n - 1, 2 n, 1}]

which illustrates the problem, try


Manipulate[Floor@m, {n, {10}}, {m, n - 1, 2 n, 1}]

A solution can also be pushed into the controller itself:


Manipulate[m, {n, {10}}, {{m, 9}, Dynamic[Slider[#1, {n - 1, 2 n, 1}]] &}]

Thanks for this feedback and suggestions are due to Karl Isensee.



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...