Skip to main content

plotting - Plot a piecewise function with black and white disks marking discontinuities


Let's say I'd like to plot Sign[x + 0.5]:


Plot[Sign[x + 0.5], {x, -1, 1}]


Mathematica will give this:


plot of the function


This plot does not show very clearly the value of Sign[x + 0.5] at x = -0.5: is it 1? is it -1? No, it's 0, but there is no indication of which it is on the plot. This is what I'd like to achieve:


plot with discontinuity markers


(I used Paint to add the markers.) How can I make it Mathematica do it?



Answer



Update 2015-7-13: PlotPiecewise now handles discontinuities of non-Piecewise functions. (It basically did this before, but required the head to be Piecewise or contain a built-in discontinuous function, like Sign. All I did was brainlessly wrap a function in Piecewise. I also had to rewrite some of the Reduce/PiecewiseExpand code. One of the more complicated examples, which used to expand to a number of integer cases, kept the integer parameter instead of expanding; in another (not shown), the Ceiling of a complicated function was no longer expanded into a Piecewise function.


Update: PlotPiecewise now automatically tries to convert a non-Piecewise function into one using PiecewiseExpand. PiecewiseExpand will also do some simplification, such as factoring and reducing a rational function; to avoid that, pass a Piecewise function directly. PlotPiecewise will not alter the formulas in a Piecewise. Note, however, that Mathematica automatically reduces x (x - 1) / (x (x - 2)) but not (x^2 - x) / (x (x - 2)).





A while back I wrote a function PlotPiecewise to produce standard pre-calculus/calculus graphs of Piecewise functions. It works a lot like plot. It evolved from time to time, but it's nowhere near a complete package. For instance, PlotPiecewise is not HoldAll like Plot, because it was convenient for a certain use-case and my typical uses didn't need it either. There are a few options, but not really a complete set. Another limitation is that it was intended for rather simple piecewise functions, of the type one might ask students to graph by hand. For instance, it uses Reduce and Limit to find asymptotes but doesn't check if they worked; one should really check. It won't handle functions that are too complicated or that cannot be expanded as Piecewise functions.


I'll offer it, since it seems to do what the OP asks and I've already written. It seems worth sharing. I hope the community appreciates it. Code dump at the end.




OP's example


*Update: There is no longer a need to expand Sign. PlotPiecewise will automatically do it.**


PlotPiecewise[Sign[x + 1/2], {x, -1, 1}]

Mathematica graphics


More Examples


PlotPiecewise[

Piecewise[{
{ 1 / (-1 + 2 x), 0 < x <= 1},
{ 2, x == 0},
{ -x, x < 0},
{ (2 - x) / (-3 + x), 1 < x < 4},
{ -6 + x, 4 < x}},
Indeterminate],
{x, -2, 6.5},
AspectRatio -> Automatic, PlotRange -> {-2.8, 3.1},
Ticks -> {Range[-3, 6], Range[-4, 3]}]


Mathematica graphics


g[t_] := Piecewise[{
{Abs[1 + t], -2 <= t < 0},
{2, t == 0},
{2 - Cos[Pi*t], 0 < t < 2},
{(-16 - 12*t + t^3)/(8*(-4 + t)), t >= 2}},
Indeterminate];
PlotPiecewise[g[t], {t, -2, 6}, PlotRange -> {-2, 9}, DotSize -> Offset[{3, 3}]]


Mathematica graphics


Update: New cases handled


The updated code can do these things:


PlotPiecewise[Exp[(Sign[Sin[x^2]] - 3/4) x/2] - 1, {x, 0, 10}]

Mathematica graphics


PlotPiecewise[
Piecewise[{
{(-1 + 3*x)^(-1), -1 < x <= 1},
{Tan[Pi*x], 1 < x < 11/2}},

Indeterminate],
{x, -2, 6.5}, AspectRatio -> Automatic, PlotRange -> {-2.8, 3.1},
Ticks -> {Range[-3, 6], Range[-4, 3]}]

Mathematica graphics


New examples (2015-7-13)


From Is there any way to reveal a removable singularity in a plot?:


PlotPiecewise[(2^x - 2)/(x - 1), {x, -2, 2}, 
"DotSize" -> Offset[{3, 3}],
"EmptyDotStyle" ->

EdgeForm[Directive[ColorData[97, 1], AbsoluteThickness[1.6]]]]

Mathematica graphics


A similar one:


PlotPiecewise[(2^x - 2)/(x^2 - 1), {x, -2, 2}]

Mathematica graphics




Code dump


Here is an update. It is I hope written in a somewhat better style. I also took the opportunity to add a couple of features. PlotPiecewise will automatically apply PiecewiseExpand, and if it produces a Piecewise function it will plot it. It will also handle a wider range of conditions in a Piecewise function. There is a bit more error checking, and some error messages have been added. It is still not HoldAll. Since Mr.Wizard prodded me to improve the code, I tried to keep it so that it would work in V7.



ClearAll[PlotPiecewise, PlotPiecewise`plot, PlotPiecewise`init, 
PlotPiecewise`solve, PlotPiecewise`expand,
PlotPiecewise`annotatedPoints, PlotPiecewise`boundaryPoints,
PlotPiecewise`interiorPoints, PlotPiecewise`sowAnnotations,
PlotPiecewise`inDomain];

PlotPiecewise::usage =
"PlotPiecewise[Piecewise[...], {x, a, b}, opts]";
PlotPiecewise::limindet =
"Limit `` is not numeric or infinite at ``";

PlotPiecewise::nonpw =
"Function `` is not a Piecewise function or did not expand to one";

PlotPiecewise`debug::debug = "``";
PlotPiecewise`debug::plot = "``";
PlotPiecewise`debug::annotation = "``";
PlotPiecewise`debug::limit = "``";
PlotPiecewise`debug =
Hold[PlotPiecewise`debug::debug, PlotPiecewise`debug::plot,
PlotPiecewise`debug::annotation, PlotPiecewise`debug::limit];

Off @@ PlotPiecewise`debug;

Options[PlotPiecewise] =
Join[{"DotSize" -> Automatic, "EmptyDotStyle" -> Automatic,
"FilledDotStyle" -> Automatic, "AsymptoteStyle" -> Automatic,
"BaseDotSize" -> Offset[{2, 2}],
"AdditionalPoints" -> {}, (*
addition pts to annotate *)

"PiecewiseExpand" -> Automatic, (* which fns.

to expand *)
"ContinuousEndpoints" -> Automatic},(* eval.
formula, not limit *)
Options[Plot]];
Options[EmptyDot] = Options[FilledDot] = Options[Asymptote] =
Options[PlotPiecewise`plot] = Options[PlotPiecewise`init] =
Options[PlotPiecewise];

(* graphics elements *)
Clear[EmptyDot, FilledDot, Asymptote];

EmptyDot[pt_, opts : OptionsPattern[]] /;
OptionValue["EmptyDotStyle"] === None := {};
FilledDot[pt_, opts : OptionsPattern[]] /;
OptionValue["FilledDotStyle"] === None := {};
Asymptote[pt_, opts : OptionsPattern[]] /;
OptionValue["AsymptoteStyle"] === None := {};
EmptyDot[pt_, opts : OptionsPattern[]] := {White,
OptionValue["EmptyDotStyle"] /. Automatic -> {},
Disk[pt,
OptionValue["DotSize"] /.

Automatic -> OptionValue["BaseDotSize"]]};
FilledDot[pt_,
opts : OptionsPattern[]] := {OptionValue["FilledDotStyle"] /.
Automatic -> {},
Disk[pt,
OptionValue["DotSize"] /.
Automatic -> OptionValue["BaseDotSize"]]};
Asymptote[x0_, opts : OptionsPattern[]] := {Dashing[Large],
OptionValue["AsymptoteStyle"] /. Automatic -> {},
Line[Thread[{x0, OptionValue[PlotRange][[2]]}]]};



PlotPiecewise`$inequality =
Greater | Less | LessEqual | GreaterEqual;
PlotPiecewise`$discontinuousAuto = Ceiling | Floor | Round | Sign;
PlotPiecewise`$discontinuousAll =
Ceiling | Floor | Round | Sign |(*Min|Max|Clip|*)UnitStep |
IntegerPart |(*FractionalPart|*)Mod | Quotient | UnitBox |
UnitTriangle |
SquareWave(*|TriangleWave|SawtoothWave*)(*|BernsteinBasis|\

BSplineBasis|Abs|If|Which|Switch*);
PlotPiecewise`$discontinuous = Ceiling | Floor | Round | Sign;

(* auxiliary functions*)

(* causes Conditional solutions to expand to all possibilities;
(arises from trig eq, and C[1] -- perhaps C[2], etc?
*)
PlotPiecewise`expand[cond_Or, var_] :=
PlotPiecewise`expand[#, var] & /@ cond;

PlotPiecewise`expand[cond_, var_] :=
Reduce[cond, var, Backsubstitution -> True];
PlotPiecewise`solve[eq_, var_] /;
MemberQ[eq, PlotPiecewise`$discontinuous, Infinity,
Heads -> True] :=
PlotPiecewise`solve[# == C[1] && C[1] ∈ Integers &&
And @@ Cases[eq, Except[_Equal]], var] & /@
Cases[eq, PlotPiecewise`$discontinuous[e_] :> e, Infinity];
PlotPiecewise`solve[eq_,
var_] := {var -> (var /. #)} & /@

List@ToRules@
PlotPiecewise`expand[
Reduce[eq, var, Reals, Backsubstitution -> True],
var] /. {False -> {}};

(* limit routines for handling discontinuous functions,
which Limit fails to do *)
Needs["NumericalCalculus`"];
PlotPiecewise`nlimit[f_?NumericQ, var_ -> x0_, dir_] := f;
PlotPiecewise`nlimit[f_, var_ -> x0_, dir_] :=

NLimit[f, var -> x0, dir];
PlotPiecewise`limit[f_, var_ -> x0_, dir_] /;
MemberQ[Numerator[f], PlotPiecewise`$discontinuous, Infinity,
Heads -> True] :=
Module[{y0, f0},
f0 = f //. (disc : PlotPiecewise`$discontinuous)[z_] /;
FreeQ[z, PlotPiecewise`$discontinuous] :> disc[
With[{dz = Abs[D[z, var] /. var -> N@x0]},
Mean[{z /. var -> N@x0,
z /. var -> x0 - 0.1 Last[dir]/Max[1, dz]}]]

];
Message[PlotPiecewise`debug::limit, {f0, f, var -> x0, dir}];
Quiet[Check[y0 = PlotPiecewise`nlimit[f0, var -> x0, dir],
Check[y0 = Limit[f0, var -> x0, dir],
If[! NumericQ[y0], y0 = Indeterminate]]], {Power::infy,
Infinity::indet, NLimit::noise}];
y0
];
PlotPiecewise`limit[f_, var_ -> x0_, dir_] :=
Module[{y0},

Quiet[Check[y0 = f /. var -> x0,
Check[y0 = Limit[f, var -> x0, dir],
If[! NumericQ[y0], y0 = Indeterminate]]], {Power::infy,
Infinity::indet}];
y0
];

PlotPiecewise`$reverseIneq = {Less -> Greater, Greater -> Less,
LessEqual -> GreaterEqual};
PlotPiecewise`reverseIneq[(rel : PlotPiecewise`$inequality)[

args__]] := (rel /. PlotPiecewise`$reverseIneq) @@
Reverse@{args};
PlotPiecewise`inDomain[] :=
LessEqual @@ PlotPiecewise`domain[[{2, 1, 3}]];
PlotPiecewise`inDomain[dom_] := LessEqual @@ dom[[{2, 1, 3}]];

(* annotatedPoints --
returns list of abscissas to be "annotated"
with dots/asymptotes
boundaryPoints --

returns list of boundaries numbers between \
pieces
interiorPoints --
returns list of points where the \
denominator is zero
*)
PlotPiecewise`annotatedPoints[allpieces_, domain_,
additionalpoints_] :=
DeleteDuplicates@Flatten@Join[
PlotPiecewise`boundaryPoints[allpieces, domain],

PlotPiecewise`interiorPoints[allpieces, domain],
additionalpoints
];

PlotPiecewise`boundaryPoints[allpieces_, domain : {var_, _, _}] :=

With[{conditions =
DeleteDuplicates[
Equal @@@
Flatten[Last /@

allpieces /.
{HoldPattern@
Inequality[a_, rel1_, b_, rel2_,
c_] :> {PlotPiecewise`reverseIneq[rel1[a, b]],
rel2[b, c]}, (rel : PlotPiecewise`$inequality)[a_, b_,
c_] :> {PlotPiecewise`reverseIneq[rel[a, b]], rel[b, c]}}
]]},
Message[PlotPiecewise`debug::annotation, conditions];
var /.
Flatten[ (* deletes no soln {}'s *)


PlotPiecewise`solve[# && PlotPiecewise`inDomain[domain],
var] & /@ conditions,
1] /. var -> {} (* no BPs in domain *)
];

PlotPiecewise`interiorPoints[allpieces_, domain : {var_, _, _}] :=
MapThread[
Function[{formula, condition},
Flatten[

{With[{solns =
PlotPiecewise`solve[
Denominator[formula, Trig -> True] ==
0 && (condition /. {LessEqual -> Less,
GreaterEqual -> Greater}) &&
LessEqual @@ PlotPiecewise`domain[[{2, 1, 3}]],
PlotPiecewise`var]},
PlotPiecewise`var /. solns /. PlotPiecewise`var -> {}
],
If[MemberQ[Numerator[formula], PlotPiecewise`$discontinuous,

Infinity, Heads -> True],
With[{solns =
PlotPiecewise`solve[
Numerator[formula] ==
0 && (condition /. {LessEqual -> Less,
GreaterEqual -> Greater}) &&
LessEqual @@ PlotPiecewise`domain[[{2, 1, 3}]],
PlotPiecewise`var]},
PlotPiecewise`var /. solns /. PlotPiecewise`var -> {}
],

{}
]}
]],
Transpose@allpieces
];

(* sowAnnotations - Sows irregular points, tagged with three ids;
"filled" \[Rule] {x,y};
"empty" \[Rule] {x,y};
"asymptote" \[Rule] x;

*)
PlotPiecewise`sowAnnotations[allpieces_,
domain : {var_, a_, b_}, {}] := {};
PlotPiecewise`sowAnnotations[allpieces_, domain : {var_, a_, b_},
points_List] :=
(Message[PlotPiecewise`debug::annotation,
"sowAnn" -> {allpieces, points}];
PlotPiecewise`sowAnnotations[allpieces, domain, ##] & @@@
Partition[{If[First[#] == a, Indeterminate, a]}~Join~#~
Join~{If[Last[#] == b, Indeterminate, b]}, 3, 1] &@

SortBy[points, N]);

PlotPiecewise`sowAnnotations[allpieces_, domain : {var_, _, _},
xminus_, x0_?NumericQ, xplus_] :=

Module[{y0, yplus, yminus, f0, fminus, fplus},
f0 = First[
Pick @@ MapAt[# /. var -> x0 & /@ # &, Transpose@allpieces,
2] /. {} -> {Indeterminate}];
Quiet[y0 = f0 /. var -> N@x0, {Power::infy, Infinity::indet}];

If[xminus =!= Indeterminate, (* xminus ≠ left endpoint *)
fminus =
First[Pick @@
MapAt[# /. var -> Mean[{xminus, x0}] & /@ # &,
Transpose@allpieces, 2] /. {} -> {Indeterminate}];
yminus = PlotPiecewise`limit[fminus, var -> x0, Direction -> 1];
];
If[xplus =!= Indeterminate, (* xplus ≠ right endpoint *)
fplus = First[
Pick @@ MapAt[# /. var -> Mean[{x0, xplus}] & /@ # &,

Transpose@allpieces, 2] /. {} -> {Indeterminate}];
yplus = PlotPiecewise`limit[fplus, var -> x0, Direction -> -1];
];
If[Abs[yminus] == Infinity || Abs[yplus] == Infinity,
Sow[x0, "asymptote"]];
If[NumericQ[y0],
Sow[{x0, y0}, "filled"]];
Message[
PlotPiecewise`debug::annotation, {{x0, y0, f0}, {xminus, yminus,
fminus}, {xplus, yplus, fplus}}];

Sow[{x0, #}, "empty"] & /@
DeleteDuplicates@DeleteCases[Select[{yminus, yplus}, NumericQ], y0]
];


(* initialization of context variables *)

PlotPiecewise`init[f : HoldPattern@Piecewise[pieces_, default_],
domain : {var_, _, _},
opts : OptionsPattern[]] :=

(PlotPiecewise`domain =
SetPrecision[domain, Infinity];
PlotPiecewise`var = var;
PlotPiecewise`allpieces =
If[default =!= Indeterminate,
Append[pieces,(*
add True case to pieces *)
{default,
If[Head[#] === Not, Reduce[#], #] &@
Simplify[Not[Or @@ (Last /@ pieces)]]}],

pieces] /. {formula_, HoldPattern@Or[e__]} :>
Sequence @@ ({formula, #} & /@ List[e]);
PlotPiecewise`$discontinuous =
OptionValue[
"PiecewiseExpand"] /. {Automatic ->
PlotPiecewise`$discontinuousAuto,
All -> PlotPiecewise`$discontinuousAll, None -> {}};
Message[PlotPiecewise`debug::debug, "f" -> f]
);


(* The main plotting function *)

PlotPiecewise`plot[f : HoldPattern@Piecewise[pieces_, default_],
domain : {var_, a_, b_}, opts : OptionsPattern[]] :=

Block[{PlotPiecewise`var, PlotPiecewise`domain,
PlotPiecewise`allpieces, PlotPiecewise`$discontinuous},
(* INITIALIZATION:
PlotPiecewise`var;
PlotPiecewise`domain;

PlotPiecewise`allpieces;
PlotPiecewise`$discontinuous
*)
PlotPiecewise`init[f, domain, opts];
Message[PlotPiecewise`debug::plot,
"allpieces" -> PlotPiecewise`allpieces];

(* POINTS OF INTEREST *)

With[{annotatedpoints = PlotPiecewise`annotatedPoints[

PlotPiecewise`allpieces,
PlotPiecewise`domain,
OptionValue["AdditionalPoints"]],
plotopts =
FilterRules[{opts},
Cases[Options[Plot], Except[Exclusions -> _]]]},
Message[PlotPiecewise`debug::plot,
"annotatedpoints" -> annotatedpoints];
(* ANNOTATIONS *)
With[{annotations = Last@Reap[

PlotPiecewise`sowAnnotations[
PlotPiecewise`allpieces,
PlotPiecewise`domain,
annotatedpoints],
{"asymptote", "empty", "filled"}]},
Message[PlotPiecewise`debug::plot,
Thread[{"asymptote", "empty", "filled"} -> annotations]];
(* PROCESS PLOT *)
With[{exclusions = Join[
If[OptionValue[Exclusions] === None, {},

Flatten[{OptionValue[Exclusions]}]],
PlotPiecewise`var == # & /@
Flatten[First@annotations]](*can't we use annotatedpoints?*)},
With[{curves =
Plot[f, domain,
Evaluate@Join[{Exclusions -> exclusions}, plotopts]]},
Show[curves,
Graphics[{ColorData[1][1], EdgeForm[ColorData[1][1]],
OptionValue[PlotStyle] /. Automatic -> {},
MapThread[

Map, {{Asymptote[#, PlotRange -> PlotRange[curves],
opts] &, EmptyDot[#, opts] &, FilledDot[#, opts] &},
If[Depth[#] > 2, First[#], #] & /@ annotations}]}]]]]
]]
];

(* The user-interface *)

PlotPiecewise[f : HoldPattern@Piecewise[pieces_, default_], domain_,
opts : OptionsPattern[]] := PlotPiecewise`plot[f, domain, opts];


(* tries to expand f as a Piecewise function *)

PlotPiecewise`pweMethods = {"Simplification" -> False,
"EliminateConditions" -> False, "RefineConditions" -> False,
"ValueSimplifier" -> None};
PlotPiecewise[f_, domain : {var_, a_, b_}, opts : OptionsPattern[]] :=
Block[{PlotPiecewise`graphics},
(* restrict var in PiecewiseExpand/Reduce*)
With[{a0 = If[# < a, #, # - 1/2] &@Floor[a],

b0 = If[# > b, #, # + 1/2] &@Ceiling[b]},
With[{pwf =
Assuming[a0 < var < b0,
PiecewiseExpand[
f /. dis : PlotPiecewise`$discontinuousAll[_] :> Piecewise[
Map[
{#[[1, -1]],
Replace[#[[2 ;;]], cond_ /; ! FreeQ[cond, C[_]] :>
(Reduce[#, var,
DeleteDuplicates@Cases[#, C[_], Infinity]] & /@

LogicalExpand[
cond /.
HoldPattern[And[e__?(FreeQ[#, var] &)]] :>
Reduce[And[e]]])
]} &,

List @@
Reduce[dis == C[1] && C[1] ∈ Integers &&
a0 < var < b0, {C[1], x}, Backsubstitution -> True]],
Indeterminate], Method -> PlotPiecewise`pweMethods]]},

If[Head[pwf] === Piecewise,
PlotPiecewise`graphics = PlotPiecewise`plot[pwf, domain, opts],
PlotPiecewise`graphics =
PlotPiecewise`plot[
Piecewise[{{f, -Infinity < var < Infinity}}, Indeterminate],
domain, opts]]
]];
PlotPiecewise`graphics
];

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],