Skip to main content

differential equations - Finding the eigenfunctions of one and two dimensional Harmonic Oscillator


(Edited) For finding the ground state wave function of:


$ H\psi(x) = (-1/2)d^2\psi(x)/dx^2 + (1/2)x^2\psi(x) = E \psi(x)$


I have written:


mOneDSchEq[n_] :=
Table[Switch[i - j, -1, p[x[i]],
0, (10/(n + 1))^2 q[x[i]] - 2 p[x[i]], 1, p[x[i]], _, 0], {i,
n}, {j, n}];


q[x_] := -x^2; p[x_] := 1;
Xarray[n_] := Do[x[i] = -5 + i 10/(n + 1), {i, 0, n + 1}];

EigVec[n_] := Eigenvectors[mOneDSchEq[n]];
lisEigVec = EigVec[35];
OneEigVec[j_] := Part[Reverse[lisEigVec], j];
y[i_] := Part[OneEigVec[1], i];
listOfPoints =
Join[{{x[0], 0}}, Table[{x[i], y[i]}, {i, 1, 35}], {{x[36], 0}}];

ListPlot[listOfPoints, PlotJoined -> True, PlotRange -> All,
PlotLabel -> "Ground State Wave Function of Harmonic Oscillator",
AxesLabel -> {"x", "y"}]

Which I have obtained the Gaussian, correctly.


The question that came to my mind is that:


Is it possible by knowing the ground stat eigenvalue, i.e. 1/2, solving the Schrödinger equation numerically, and obtain the ground state wave function? in other words, to solve:


$ H\psi(x) = (-1/2)d^2\psi(x)/dx^2 + (1/2)x^2\psi(x) = (1/2) \psi(x)$


or


$ H\psi(x) = (-1/2)d^2\psi(x)/dx^2 + (1/2)x^2\psi(x) = (3/2) \psi(x)$



So, I wrote:


s = NDSolve[{-(1/2) \[Psi]''[x] + (1/2) x^2(\[Psi][x]) == (1/2) \[Psi][
x], \[Psi][-5] == 0, \[Psi][5] == 0}, \[Psi], {x, -5, 5}]

Plot[Evaluate[\[Psi][x] /. s], {x, -5, 5}, PlotRange -> All]

BUT, I got nothing. What is the problem?


The other question is that, I was traveling through the website and found an elegant approach to two dimensional Harmonic Oscillator here.


My question is, if again we want to solve the Schrödinger equation numercally and obtain wave functions, now two dimensional, by knowing the eigenvalues, what should we do? For example:


$ H\psi(x,y) = (-1/2)(d^2/x^2 + d^2/dy^2)\psi(x,y) + (1/2)(x^2 + y^2)\psi(x,y) = (1) \psi(x,y) $



and


$ H\psi(x,y) = (-1/2)(d^2/x^2 + d^2/dy^2)\psi(x,y) + (1/2)(x^2 + y^2+ x y)\psi(x,y) = (0.96) \psi(x,y) $


Thanks for your attention!



Answer



To give another answer for the one-dimensional harmonic oscillator, let's use a different approach based on the NDSolve functionality I alluded to in the linked answer. Edit: I also update the linked answer to include the analogue of this approach in two dimensions.


n = 2000;
a = .02;
grid = N[a Range[-n, n]];
derivative2 =
NDSolve`FiniteDifferenceDerivative[2, grid]["DifferentiationMatrix"]



SparseArray[<20009>,{4001,4001}]



potential = Map[(1/2 #^2) &, grid];

hamiltonian = -derivative2/2 +
DiagonalMatrix[SparseArray[potential]];

eigenvalues = Chop[Eigenvalues[hamiltonian, -10]]



{9.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 1.5, 0.5}



v = Chop[Eigenvectors[hamiltonian, -10]];

ListLinePlot[{Abs[v[[-1]]]^2, Abs[v[[-2]]]^2,
Abs[v[[-3]]]^2}, DataRange -> grid[[{1, -1}]],
PlotRange -> {{-4, 4}, All}]


plot of three functions


Here I used a grid spacing of a = 0.02 and get numerically very exact solutions for the lowest states of the harmonic oscillator.


The matrix representing the second derivatives (derivative2) in the Laplacian is generated using FiniteDifferenceDerivative.


To address some of the other issues in the question:


The initial code in the question didn't produce a result for me. However, since you state you got the desired result, I assume that there is some typo in the question. Definitely, one can improve the first code block by wrapping the generated Hamiltonian matrix in N to make it into a machine-precision matrix that can be diagonalized much faster.


However, the main question seems to have been: why does the differential equation


s = 
NDSolve[{-(1/2) ψ''[x] + (1/2) x^2 (ψ[x]) == (1/2) ψ[
x], ψ[-5] == 0, ψ[5] == 0}, ψ[x], {x, -5, 5}];
Clear[x];

ψSol[x_] = ψ[x] /. s[[1, 1]];

Plot[Evaluate[ψSol[x]], {x, -5, 5},
PlotRange -> All]

yield an apparently empty plot? The answer is that the boundary conditions are incorrect if you're looking for a non-trivial solution. The solver actually finds the only possible answer, $\psi(x)\equiv 0$ for all $x$. But this is because you forced the wave function to be zero at two points whereas the ground state by definition has no nodes!


So you should solve the following equation instead:


s = 
NDSolve[{-(1/2) ψ''[x] + (1/2) x^2 (ψ[x]) == (1/2) ψ[
x], ψ[0] == 1, ψ'[0] == 0}, ψ[x], {x, -5, 5}];

Clear[x];
ψSol[x_] = ψ[x] /. s[[1, 1]];

Plot[Evaluate[ψSol[x]], {x, -5, 5},
PlotRange -> All]

gaussian


This yields the expected Gaussian. I chose boundary conditions for the function to be 1 and its derivative to be 0 at the origin.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...