Skip to main content

graphics3d - Is there a way to increase the smoothness of a cylinder?


I am using Cylinder to produce wide flat disks (in Mathematica 8). This works just fine except that the circular base of such a cylinder turns out to be really just a 40-gon which is simply too coarse an approximation to a circle for what I have in mind. Is there a way to convince Mathematica to use say a 200-gon as a circular base for a cylinder?


Here is an example of the kind of picture that I am trying to create. Zoom in to see how coarse the cylinders' curved surfaces pan out.


Graphics3D[{Cylinder[{{0, 0, 0}, 0.0011 {0.`, 0.`, -0.9510565162951536`}}, .1], 
Cylinder[{{0, 0, 0}, 0.0011 {0.`, 0.`, 0.9510565162951536`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.85065080835204`, 0.`, -0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {0.85065080835204`, 0.`, 0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.6881909602355868`, -0.5`, -0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.6881909602355868`, 0.5`, -0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.6881909602355868`, -0.5`, 0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.6881909602355868`, 0.5`, 0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {-0.2628655560595668`, -0.8090169943749475`, \
-0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.2628655560595668`,
0.8090169943749475`, -0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.2628655560595668`, -0.8090169943749475`,
0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.2628655560595668`, 0.8090169943749475`,

0.42532540417601994`}}, .1],
Cylinder[{{0, 0, 0}, 0.0011 {0.`, 0.`, 0.`}}, .1],
Cylinder[{{0, 0, 0}, 0.0011 {0.`, 0.`, 1.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.42532540417602`, 0.3090169943749474`,
0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.7236067977499789`, 0.5257311121191336`,
0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {0.16245984811645317`, 0.5`, 0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.2628655560595668`, 0.8090169943749473`,
0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.27639320225002106`, 0.8506508083520399`,
0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.42532540417602`, -0.3090169943749474`,
0.8506508083520399`}}, .1],

Cylinder[{{0, 0, 0},
0.0011 {-0.7236067977499789`, -0.5257311121191336`,
0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.85065080835204`, 0.`, 0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.16245984811645317`, -0.5`, 0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.27639320225002106`, -0.8506508083520399`,
0.4472135954999579`}}, .1],

Cylinder[{{0, 0, 0},
0.0011 {-0.2628655560595668`, -0.8090169943749473`,
0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.5257311121191336`, 0.`, 0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.8944271909999159`, 0.`, 0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.6881909602355868`, -0.5`, 0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {0.6881909602355868`, 0.5`, 0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.7236067977499789`, -0.5257311121191336`, \
-0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.42532540417602`, -0.3090169943749474`, \
-0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0}, 0.0011 {0.`, 0.`, -1.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.2628655560595668`, -0.8090169943749473`, \

-0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.16245984811645317`, -0.5`, -0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.27639320225002106`, -0.8506508083520399`, \
-0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.7236067977499789`,
0.5257311121191336`, -0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {0.42532540417602`,
0.3090169943749474`, -0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.85065080835204`, 0.`, -0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.27639320225002106`,
0.8506508083520399`, -0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.16245984811645317`, 0.5`, -0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},

0.0011 {0.2628655560595668`,
0.8090169943749473`, -0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.8944271909999159`, 0.`, -0.4472135954999579`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.5257311121191336`, 0.`, -0.8506508083520399`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.6881909602355868`, 0.5`, -0.5257311121191336`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.6881909602355868`, -0.5`, -0.5257311121191336`}}, .1],

Cylinder[{{0, 0, 0}, 0.0011 {0.`, 1.`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.5877852522924731`, 0.8090169943749473`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.9510565162951535`, 0.3090169943749474`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.9510565162951535`, -0.3090169943749474`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {-0.5877852522924731`, -0.8090169943749473`, 0.`}}, .1],
Cylinder[{{0, 0, 0}, 0.0011 {0.`, -1.`, 0.`}}, .1],

Cylinder[{{0, 0, 0},
0.0011 {0.5877852522924731`, -0.8090169943749473`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.9510565162951535`, -0.3090169943749474`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.9510565162951535`, 0.3090169943749474`, 0.`}}, .1],
Cylinder[{{0, 0, 0},
0.0011 {0.5877852522924731`, 0.8090169943749473`, 0.`}}, .1]}]

Answer



You can fix this problem by using the following Option in Graphics3D:



Method -> {"CylinderPoints" -> {200, 1}}

Adjust 200 to match your requirements. (Indeed the default is 40.)


Edit: I don't know exactly what the second parameter does, but using the single parameter form shown in the documentation linked below results in a big slow-down. I could guess that it is points in the other direction but that doesn't seem to make sense. Anyway I can't tell the visual difference between {200, 1} and {200, 200} but the former is much faster than the latter. ("CylinderPoints" -> 200 is apparently equivalent to "CylinderPoints" -> {200, 200}.)


You can make the change permanent with the Option Inspector by changing this value in the Graphics3DBoxOptions:


enter image description here


From Three-Dimensional Graphics Primitives:



Even though Cone, Cylinder, Sphere, and Tube produce high-quality renderings, their usage is scalable. A single image can contain thousands of these primitives. When rendering so many primitives, you can increase the efficiency of rendering by using special options to change the number of points used by default to render Cone, Cylinder, Sphere, and Tube. The "ConePoints" Method option to Graphics3D is used to reduce the rendering quality of each individual cone. Cylinder, sphere, and tube quality can be similarly adjusted using "CylinderPoints", "SpherePoints", and "TubePoints", respectively.




40 points:


enter image description here


200 points:


enter image description here


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.