Skip to main content

Intersection for lists of numeric data


I know that Intersection is a pattern matching function and will not evaluate list elements to determine if two or more list have equal elements. So my question is, what can be done to do this? Say, determine if two lists have numerically equal elements within some tolerance dx?



Answer



Closely related questions:





The most direct method is to make use of the SameTest option:


a = {1, 2.2, 3.14159};
b = {11/5, Pi, 1/2, 1/4};


Intersection[a, b, SameTest -> (Abs[# - #2] < 0.0001 &)]


{2.2, 3.14159}

This however requires a pairwise comparison that has a much higher computational complexity than the default method. A different method that does not require a pairwise compare will be much faster on long lists. Iff each list is internally free of duplicates and your tolerance requirement can be relaxed to rounding you could use this:


Cases[GatherBy[Join[b, a], Round[#, 0.0001] &], {x_, _} :> x]


{11/5, π}


Note here that the exact values are returned despite the use of Round, because list b is given first in Join.


The speed advantage can be great:


a = RandomReal[99, 1000];
b = RandomReal[99, 1000];

Intersection[a, b, SameTest -> (Abs[# - #2] < 0.0001 &)] // Timing // First
Cases[GatherBy[Join[b, a], Round[#, 0.0001] &], {x_, __} :> x] // Timing // First



1.638


0.0011728



If a list is not internally free of duplicates any of those values will be returned as well:


a = {1, 2.2, 3.14159};
b = {11/5, Pi, 1/2, 0.5}; (* note 1/2 and 0.5 *)

Cases[GatherBy[Join[b, a], Round[#, 0.0001] &], {x_, __} :> x]



{11/5, π, 1/2}

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....