Skip to main content

pattern matching - How can I separate a separable function



I have a separable function f[x,y], and I would like to find two functions g[x] and h[y] with


f[x,y]=g[x]h[y]


where g[x] doesn't depend on y and h[y] doesn't depend on x. Ideally, g and h should have the same magnitude, to prevent overflows/underflows. I have a hackish approach that works, but involves a lot of manual labor.


Background: f[x,y] is a filter kernel I want to apply to an image, and using two separate 1d-filters is much more efficient.


My first approach was to start with g[x]=f[x,0]. But that doesn't work for e.g. f[x,y]=e−x2+y22σ2xy2πσ6


Currently, I have a function that "removes" x or y from f[x,y] using pattern matching:


removeSymbol[f_, s_] := f //. {s^_ + a_ -> a, s^_.*a_ -> a}

but that means I have to manually adjust this pattern for different f's.


Is there a more elegant way to do this? f[x,y] is usually a derivative of a gaussian, e.g.



gaussian[x_,y_] := 1/(2 π σ^2) Exp[-((x^2 + y^2)/(2 σ^2))]
f[x_,y_] := D[gaussian[x,y], x, y]

Answer



I would take a logarithmic derivative with respect to one variable - it should be then independent of the other one, then integrate it back over the first variable and exponentiate. The second function is found by plain division. Here is the code:


ClearAll[getGX];
getGX[expr_, xvar_, yvar_] :=
With[{dlogg = D[Log[expr], xvar] // FullSimplify},
Exp[Integrate[dlogg, xvar]] /; FreeQ[dlogg, yvar]];

Clear[getHY];

getHY[expr_, xvar_, yvar_] := FullSimplify[(#/getGX[#, xvar, yvar]) &[expr]]

A test function:


ftest[x_, y_] := (x^2 + 1)*y^3 *Exp[-x - y] 

Now,


getGX[ftest[x,y],x,y]

(* E^-x (1+x^2) *)


getHY[ftest[x,y],x,y]

(* E^-y y^3 *)

The integration constant ambiguity translates into an ambiguity of how you split the function, since this operation is only defined up to a multiplicative constant factor by which you can multiply one function, and divide the other one.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]