Skip to main content

plotting - Drawing the Pursuit curves


I was reading this post on Filling Space with Pursuit Polygons. I didn't really see where the filling was, but found it quite interesting.


Then I saw these pursuit curves.



enter image description here


They seem to have used a different logarithm. For example looking at the square, by tweaking the code from the previous code, I got this


With[{data = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}},  Graphics[{Table[{Scale[       Rotate[Line[data], 90/11*x Degree], {x, x}]}, {x, 0, 11}]}]]

enter image description here


Both picture has 11 sets of squares. With a bit trial and error, I got as close as possible by changing the angles.


How can I get the identical pictures?


And these ones below, which looks more challenging. enter image description here enter image description here



Answer



In this answer of mine I wrote a simple function that will draw the curve you are after, given an arbitrary polygon:



g[x_] := Fold[Append[#1, BSplineFunction[#1[[#2]], SplineDegree -> 1][.1]] &, x, Partition[Range[200], 2, 1]]

For example, given the triangle


ListPlot[Prepend[{{0, 0}, {1, 0}, {1/2, Sqrt[3]/2}}, {1/2, Sqrt[3]/2}], AspectRatio -> 1, Joined -> True, PlotRange -> All]

enter image description here


we get


ListPlot[Prepend[g@{{0, 0}, {1, 0}, {1/2, Sqrt[3]/2}}, {1/2, Sqrt[3]/2}], AspectRatio -> 1, Joined -> True, PlotRange -> All]

enter image description here



With this, it is just a matter of combining triangles to generate all the figures in the OP.


For example, given the hexagon


ListPlot[{Prepend[{{0, 0}, {1, 0}, {1/2, Sqrt[3]/2}}, {1/2, Sqrt[3]/2}], Prepend[{{1, 0}, {2, 0}, {3/2, Sqrt[3]/2}}, {3/2, Sqrt[3]/2}], Prepend[{{0, 0}, {1, 0}, {1/2, -(Sqrt[3]/2)}}, {1/2, -(Sqrt[3]/2)}], Prepend[{{1, 0}, {2, 0}, {3/2, -(Sqrt[3]/2)}}, {3/2, -(Sqrt[3]/2)}], Prepend[{{1/2, Sqrt[3]/2}, {3/2, Sqrt[3]/2}, {1, 0}}, {1, 0}], Prepend[{{1/2, -(Sqrt[3]/2)}, {3/2, -(Sqrt[3]/2)}, {1, 0}}, {1, 0}]}, AspectRatio -> 1, Joined -> True, PlotRange -> All]

enter image description here


we get


ListPlot[{Prepend[g@{{0, 0}, {1, 0}, {1/2, Sqrt[3]/2}}, {1/2, Sqrt[3]/2}], Prepend[g@{{1, 0}, {2, 0}, {3/2, Sqrt[3]/2}}, {3/2, Sqrt[3]/2}], Prepend[g@{{0, 0}, {1, 0}, {1/2, -(Sqrt[3]/2)}}, {1/2, -(Sqrt[3]/2)}], Prepend[g@{{1, 0}, {2, 0}, {3/2, -(Sqrt[3]/2)}}, {3/2, -(Sqrt[3]/2)}], Prepend[g@{{1/2, Sqrt[3]/2}, {3/2, Sqrt[3]/2}, {1, 0}}, {1, 0}], Prepend[g@{{1/2, -(Sqrt[3]/2)}, {3/2, -(Sqrt[3]/2)}, {1, 0}}, {1, 0}]}, AspectRatio -> 1, Joined -> True, PlotRange -> All]

enter image description here


Tweaking the parameters and using black lines, we get



enter image description here


which is almost identical to the figure in the OP. Similarly,


enter image description here


while the rest of figures are left to the reader.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...