Skip to main content

programming - How to check if a 2D point is in a polygon?


Background: I use code from An Efficient Test For A Point To Be In A Convex Polygon Wolfram Demonstration to check if a point ( mouse pointer ) is in a ( convex ) polygon. Clearly this code fails for non-convex polygons.


Question: I am looking for an efficient routine to check if a 2D-point is in a polygon.



Answer



Using the function winding from Heike's answer to a related question


 winding[poly_, pt_] := 
Round[(Total@ Mod[(# - RotateRight[#]) &@(ArcTan @@ (pt - #) & /@ poly),

2 Pi, -Pi]/2/Pi)]

to modify the test function in this Wolfram Demonstration by R. Nowak to


testpoint[poly_, pt_] := 
Round[(Total@ Mod[(# - RotateRight[#]) &@(ArcTan @@ (pt - #) & /@ poly),
2 Pi, -Pi]/2/Pi)] != 0

gives


enter image description here


Update: Full code:



Manipulate[With[{p = Rest@pts, pt = First@pts},
Graphics[{If[testpoint[p, pt], Pink, Orange], Polygon@p},
PlotRange -> 3 {{-1, 1}, {-1, 1}},
ImageSize -> {400, 475},
PlotLabel -> Text[Style[If[testpoint[p, pt], "True ", "False"], Bold, Italic]]]],
{{pts, {{0, 0}, {-2, -2}, {2, -2}, {0, 2}}},
Sequence @@ (3 {{-1, -1}, {1, 1}}), Locator, LocatorAutoCreate -> {4, Infinity}},
SaveDefinitions -> True,
Initialization :> {
(* test if point pt inside polygon poly *)

testpoint[poly_, pt_] :=
Round[(Total@ Mod[(# - RotateRight[#]) &@(ArcTan @@ (pt - #) & /@ poly),
2 Pi, -Pi]/2/Pi)] != 0 } ]

Update 2: An alternative point-in-polygon test using yet another undocumented function:


 testpoint2[poly_, pt_] := Graphics`Mesh`InPolygonQ[poly, pt]

testpoint2[{{-1, 0}, {0, 1}, {1, 0}}, {1/3, 1/3}]
(*True*)
testpoint2[{{-1, 0}, {0, 1}, {1, 0}}, {1, 1}]

(*False*)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]