Skip to main content

graphics - How to compile Heike's winding number function?


Heike gave the following function for winding number:


winding[poly_, pt_] :=  
Round[(Total@Mod[(# - RotateRight[#]) &@(ArcTan @@ (pt - #) & /@ poly),
2 Pi, -Pi]/2./Pi)]

I attempted to compile it as follows:


winding2 := Compile[{{poly, _Real, 2}, {pt, _Real, 1}},   
Round[(Total@Mod[(# - RotateRight[#]) &@(ArcTan @@ (pt - #) & /@ poly),

2 Pi, -Pi]/2./Pi)]]

Applied to the following simple problem, the compiled version gives error messages:


poly = {{0., 0.}, {10., 0.}, {10., 6.}, {0, 6}, {0., 0.}};
pt = {5., 3.};
winding2[poly, pt]

The error messages include:


Compile::cpapot: Compilation of ArcTan@@(ptCompile`GetElement[poly,System`Private`CompileSymbol[0]]) 
is not supported for the function argument ArcTan. The only function arguments supported are

Times, Plus, or List. Evaluation will use the uncompiled function. >>
CompiledFunction::cfse: Compiled expression 6.283185307179586` should be a machine-size integer. >>
CompiledFunction::cfex: Could not complete external evaluation at instruction 1;
proceeding with uncompiled evaluation. >>

Where am I going wrong?



Answer



First, if you use := in your assignment, then the compilation is not done instantly but every time you call winding2. That's btw the reason why you get the error message when you try to call the function because it is not compiled until then and the error is a compilation error.


Secondly, as the error messages sais, @@ can only be used with Times, Plus or List, so you have to expand this part:


winding2 = 

Compile[{{poly, _Real, 2}, {pt, _Real, 1}},
Round[Total@Mod[# - RotateRight[#] &@(ArcTan[#[[1]], #[[2]]] &@
(Transpose@poly - pt)), 2 Pi, -Pi]/(2. Pi)]
]

Seems to work pretty smoothly


enter image description here


And here the code:


winding2 = 
Compile[{{poly, _Real, 2}, {pt, _Real, 1}},

0 != Round[
Total@Mod[# -
RotateRight[#] &@(ArcTan[#[[1]], #[[2]]] &@(Transpose@
poly - pt)), 2 Pi, -Pi]/(2. Pi)],
CompilationTarget -> "C", RuntimeOptions -> "Speed"];

With[{gr =
RegionPlot[x^2 + y^3 < 2, {x, -2, 2}, {y, -2, 2}, Mesh -> All,
FrameTicks -> None, PlotPoints -> 3, MaxRecursion -> 4,
PlotStyle -> RGBColor[14/15, 232/255, 71/85],

MeshStyle -> RGBColor[88/255, 22/51, 39/85]]},
DynamicModule[{pt = {0, 1}, polyPts},
polyPts =
gr[[1, 1, #]] & /@
Flatten[Cases[gr, Polygon[pts__] :> Sequence[pts], Infinity], 1];
LocatorPane[Dynamic[pt],
Dynamic@Show[gr,
Graphics[{Opacity[.5], RGBColor[38/255, 139/255, 14/17],
Polygon[Pick[polyPts, winding2[#, pt] & /@ polyPts]]}]]]]]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]