I have this interpolation example
zzz = Interpolation[{
{{1}, 2`100*Pi},
{{2}, 3`100*Pi},
{{3}, 4`100*Pi}
}, InterpolationOrder -> 1];
zzz[2]
zzz[2.5]
zzz[2.5`100]
and I am getting these resilts
9.424777960769379715387930149838508652591508198125317462924833776923449218858626995884104476026351204
10.9956
10.99557428756427633461925184147826009469009289781287037341230607307735742200173149519812188869740974
first number as expected with 100 digits, second with only 4 digits, but if I add `100 to the argument I can get it with 100 digits as well.
Now I use multidimensional example
testData = {
{{-2.*10^-6, 0, -18}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648*10^6},
{{-2.*10^-6, 0, -17},
952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046},
{{-2.*10^-6, 1, -18}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136*10^6},
{{-2.*10^-6, 1, -17}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717},
{{-1.78947*10^-6, 0, -18}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572*10^6},
{{-1.78947*10^-6, 0, -17}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970},
{{-1.78947*10^-6, 1, -18}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917*10^6},
{{-1.78947*10^-6, 1, -17}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570}
};
ff[x1_, x2_, x3_] = Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]
and for this example, I cannot get the results with 100 digits, even if I use exact existing values
ff[-2.0`100*10`100^-6, 0.0`100, -18.0`100]
ff[-2.0`100*10`100^-6, 1.0`100, -18.0`100]
Out[350]= -1.00853*10^6
Out[351]= -1.00854*10^6
How to force interpolation to use required precision? There is no WorkingPrecision argument for interpolation.
UPDATE 1
even if I put `100 everywhere like this, it is still the same result
testData = {
{{-2`100*10^-6, 0.0`100, -18`100}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648`100*10^6},
{{-2`100*10^-6, 0.0`100, -17`100}, 952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046`100},
{{-2`100*10^-6, 1`100, -18`100}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136`100*10^6},
{{-2`100*10^-6, 1`100, -17`100}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717`100},
{{-1.78947`100*10^-6, 0.0`100, -18`100}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572`100*10^6},
{{-1.78947`100*10^-6, 0.`100, -17`100}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970`100},
{{-1.78947`100*10^-6, 1`100, -18`100}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917`100*10^6},
{{-1.78947`100*10^-6, 1`100, -17`100}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570`100}
};
ff[x1_, x2_, x3_] =
Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]
Answer
Evaluate 0.0`100
and you'll get a machine precision zero. Use the exact 0
instead:
fff = Interpolation[testData /. x_ /; x == 0 -> 0, InterpolationOrder -> 1];
fff[-2.`100.*^-6, 0, -18.`100.]
(*
-1.0085342934095674296568009307696602542373459097398318819980008046050\
804319728693356974709368063165*10^6
*)
Comments
Post a Comment