Skip to main content

Interpolation function precision in multi dimentional case



I have this interpolation example


zzz = Interpolation[{
{{1}, 2`100*Pi},
{{2}, 3`100*Pi},
{{3}, 4`100*Pi}
}, InterpolationOrder -> 1];
zzz[2]
zzz[2.5]
zzz[2.5`100]


and I am getting these resilts


9.424777960769379715387930149838508652591508198125317462924833776923449218858626995884104476026351204

10.9956

10.99557428756427633461925184147826009469009289781287037341230607307735742200173149519812188869740974

first number as expected with 100 digits, second with only 4 digits, but if I add `100 to the argument I can get it with 100 digits as well.


Now I use multidimensional example


testData = {

{{-2.*10^-6, 0, -18}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648*10^6},
{{-2.*10^-6, 0, -17},
952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046},
{{-2.*10^-6, 1, -18}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136*10^6},
{{-2.*10^-6, 1, -17}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717},

{{-1.78947*10^-6, 0, -18}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572*10^6},
{{-1.78947*10^-6, 0, -17}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970},

{{-1.78947*10^-6, 1, -18}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917*10^6},

{{-1.78947*10^-6, 1, -17}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570}
};
ff[x1_, x2_, x3_] = Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]

and for this example, I cannot get the results with 100 digits, even if I use exact existing values


ff[-2.0`100*10`100^-6, 0.0`100, -18.0`100]
ff[-2.0`100*10`100^-6, 1.0`100, -18.0`100]

Out[350]= -1.00853*10^6
Out[351]= -1.00854*10^6


How to force interpolation to use required precision? There is no WorkingPrecision argument for interpolation.


UPDATE 1


even if I put `100 everywhere like this, it is still the same result


testData = {
{{-2`100*10^-6, 0.0`100, -18`100}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648`100*10^6},
{{-2`100*10^-6, 0.0`100, -17`100}, 952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046`100},

{{-2`100*10^-6, 1`100, -18`100}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136`100*10^6},
{{-2`100*10^-6, 1`100, -17`100}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717`100},


{{-1.78947`100*10^-6, 0.0`100, -18`100}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572`100*10^6},
{{-1.78947`100*10^-6, 0.`100, -17`100}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970`100},

{{-1.78947`100*10^-6, 1`100, -18`100}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917`100*10^6},
{{-1.78947`100*10^-6, 1`100, -17`100}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570`100}
};
ff[x1_, x2_, x3_] =
Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]

Answer




Evaluate 0.0`100 and you'll get a machine precision zero. Use the exact 0 instead:


fff = Interpolation[testData /. x_ /; x == 0 -> 0, InterpolationOrder -> 1];

fff[-2.`100.*^-6, 0, -18.`100.]
(*
-1.0085342934095674296568009307696602542373459097398318819980008046050\
804319728693356974709368063165*10^6
*)

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....