Skip to main content

Interpolation function precision in multi dimentional case



I have this interpolation example


zzz = Interpolation[{
{{1}, 2`100*Pi},
{{2}, 3`100*Pi},
{{3}, 4`100*Pi}
}, InterpolationOrder -> 1];
zzz[2]
zzz[2.5]
zzz[2.5`100]


and I am getting these resilts


9.424777960769379715387930149838508652591508198125317462924833776923449218858626995884104476026351204

10.9956

10.99557428756427633461925184147826009469009289781287037341230607307735742200173149519812188869740974

first number as expected with 100 digits, second with only 4 digits, but if I add `100 to the argument I can get it with 100 digits as well.


Now I use multidimensional example


testData = {

{{-2.*10^-6, 0, -18}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648*10^6},
{{-2.*10^-6, 0, -17},
952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046},
{{-2.*10^-6, 1, -18}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136*10^6},
{{-2.*10^-6, 1, -17}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717},

{{-1.78947*10^-6, 0, -18}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572*10^6},
{{-1.78947*10^-6, 0, -17}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970},

{{-1.78947*10^-6, 1, -18}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917*10^6},

{{-1.78947*10^-6, 1, -17}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570}
};
ff[x1_, x2_, x3_] = Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]

and for this example, I cannot get the results with 100 digits, even if I use exact existing values


ff[-2.0`100*10`100^-6, 0.0`100, -18.0`100]
ff[-2.0`100*10`100^-6, 1.0`100, -18.0`100]

Out[350]= -1.00853*10^6
Out[351]= -1.00854*10^6


How to force interpolation to use required precision? There is no WorkingPrecision argument for interpolation.


UPDATE 1


even if I put `100 everywhere like this, it is still the same result


testData = {
{{-2`100*10^-6, 0.0`100, -18`100}, -1.00853429340956742965680093076966025423734590973983188199800080460508043197286933569747093680631648`100*10^6},
{{-2`100*10^-6, 0.0`100, -17`100}, 952504.61044236930112440429386078472672512393090882097358420180063200222870428099604804394164585046`100},

{{-2`100*10^-6, 1`100, -18`100}, -1.008544941816832295575440188033483155333800668013690157106923425838109768669333223372232072904210136`100*10^6},
{{-2`100*10^-6, 1`100, -17`100}, -952514.6672734985329986920711230513627204920640531655413765067694156739368659196153982113188871999717`100},


{{-1.78947`100*10^-6, 0.0`100, -18`100}, -1.00854109353837536345550608172429712197251598047769246281925070613484574642246277456744911673832572`100*10^6},
{{-1.78947`100*10^-6, 0.`100, -17`100}, -952511.41057117723492310944481542159446029400164668155440545170216176754315387443491802212157785970`100},

{{-1.78947`100*10^-6, 1`100, -18`100}, -1.008551741385092646935524440345434727928230066236270646432464156954808417875408736480254883876917917`100*10^6},
{{-1.78947`100*10^-6, 1`100, -17`100}, -952521.4668417583449142805833940440259658101867440498419481296004930320450422321944211465035742782570`100}
};
ff[x1_, x2_, x3_] =
Interpolation[testData, InterpolationOrder -> 1][x1, x2, x3]

Answer




Evaluate 0.0`100 and you'll get a machine precision zero. Use the exact 0 instead:


fff = Interpolation[testData /. x_ /; x == 0 -> 0, InterpolationOrder -> 1];

fff[-2.`100.*^-6, 0, -18.`100.]
(*
-1.0085342934095674296568009307696602542373459097398318819980008046050\
804319728693356974709368063165*10^6
*)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...