Skip to main content

differential equations - NDSolve - sampling for result during the computation


I am using NDSolve for a Langevin dynamics problem. I want to the know long term behaviour of my system (t>1) but it has to be simulated with very small time steps (dt∼10−9). An example code:


R[t_Real]:= RandomVariate[NormalDistribution[0,1]]

NDSolve[

{(-x''[t] - k1*x'[t] + k2*R[t])==0, x[0]==0, x'[0]==0} //.values,
x,
{t, 0, 10},
StartingStepSize-> 10^-9,
Method->{"FixedStep",Method->"ExplicitEuler"},
MaxSteps->\[Infinity]
]

The Problem: My computer runs out memory when trying to store 1010 data points necessary for this computation. Is there a way to sample and store only a small subset of all the integration points?



Answer




You can have NDSolve do the integration but not save the results (set second argument to {}). Then use EvaluationMonitor to save points at whatever interval dt you please. This uses much less memory; in fact for dt = 10^-2, the memory use is negligible for the settings below.


Since parameters were not given by the OP, I used the simplest choices. Also, waiting for ten billion steps seemed silly for a proof-of-concept trial, so I lengthened the step size.


MaxMemoryUsed[]

SeedRandom[1];
R[t_Real] := RandomVariate[NormalDistribution[0, 1]];
values = {k1 -> 1, k2 -> 1};

lastt = -1;
dt = 10^-2;


{foo, {pts}} =
Reap@NDSolve[{(-x''[t] - k1*x'[t] + k2*R[t]) == 0, x[0] == 0, x'[0] == 0} /. values,
{}, {t, 0, 10},
StartingStepSize -> 10^-5,
Method -> {"FixedStep", Method -> "ExplicitEuler"}, MaxSteps -> ∞,
EvaluationMonitor :> If[t >= lastt + dt, lastt = t; Sow[{t, x[t]}]]
];
sol = Interpolation[pts];


MaxMemoryUsed[]

Plot[sol[t], {t, 0, 10}]

(* 37243360 *)

(* 37243360 *)

Mathematica graphics


When the integral x is requested, the memory use by NDSolve is significantly higher:



MaxMemoryUsed[]

SeedRandom[1];
R[t_Real] := RandomVariate[NormalDistribution[0, 1]];
values = {k1 -> 1, k2 -> 1};

lastt = -1;
dt = 10^-2;

{foo, {pts}} =

Reap@NDSolve[{(-x''[t] - k1*x'[t] + k2*R[t]) == 0, x[0] == 0, x'[0] == 0} /. values,
x, {t, 0, 10},
StartingStepSize -> 10^-5,
Method -> {"FixedStep", Method -> "ExplicitEuler"}, MaxSteps -> ∞,
EvaluationMonitor :> If[t >= lastt + dt, lastt = t; Sow[{t, x[t]}]]
];
sol = Interpolation[pts];

MaxMemoryUsed[]


Plot[x[t] /. First[foo] // Evaluate, {t, 0, 10}]

(* 37243360 *)

(* 127874624 *)

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]