So I need to use Mathematica to find the solution of $y=x- \epsilon \sin(2y)$ as a power series in terms of $\epsilon$. I'd assume I'd need to create an equation $f=x-y- \epsilon \sin(2y)$, then express $y(\epsilon)=\sum_n a_n \epsilon^n$, then input into series, but I can't seem to get it to work. Some help would be appreciated.
I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]
Comments
Post a Comment