Skip to main content

plotting - Geodesics on a torus


Is it possible to draw geodesics between the points in a path on a torus - toroidal surface?


geodesics: generalization of the notion of a "straight line" to "curved spaces"


paths = {{{348.488, 132.622}, {336.333, 63.6857}, {394.365, 24.5422},
{39.3603, 78.1653}, {109.094, 84.2662}, {170.317, 50.3295},
{195.403, 115.68}, {263.324, 132.615}, {316.947, 177.61},
{381.382, 150.259}, {49.8526, 164.812}, {41.3217, 95.3342},

{11.7384, 158.776}, {65.3616, 113.781}, {5.35985, 77.728},
{18.7165, 9.01408}, {358.715, 372.961}, {394.767, 312.96},
{340.367, 268.907}, {313.016, 333.343}, {269.92, 388.503}}};

The plot has some problem because periodic boundary conditions (PBCs).


The plot has some problem because periodic boundary conditions (PBCs).



Answer



I don't know if there's a simple way to find geodesics on a torus, but I can give you a general way to find geodesics on any curved surface.


First, I define the torus:


r = 3;

torus[{u_, v_}] := {Cos[u]*(Sin[v] + r), Sin[u]*(Sin[v] + r), Cos[v]}

My initial attempt was then to use variational methods to derive a formula for geodesics:


Needs["VariationalMethods`"]
eq = EulerEquations[Sqrt[Total[D[torus[{u, v[u]}], u]^2]], v[u], u];

And use ParametricNDSolve & FindRoot to find the right parameters that connect the start and end point on the torus:


geodesic[{{u1_, v1_}, {u2_, v2_}}] := Module[{start, g, sol},
If[u2 < u1, Return[geodesic[{{u2, v2}, {u1, v1}}]]];
sol = ParametricNDSolve[Flatten[{

eq, v[0] == v1, v'[0] == a
}], v, {u, 0, u2 - u1}, {a}];
start = a /. FindRoot[Evaluate[(v[a][u2 - u1] - v2 /. sol)], {a, 0}];
g = v[start] /. sol;
Function[t, {u1 + t*(u2 - u1), g[t*(u2 - u1)]}]
]

So given two points, geodesic will return a function that maps a number $0\leq t\leq 1$ to torus coordinates of the right geodesic:


LocatorPane[
Dynamic[pts],

Dynamic[ParametricPlot[Evaluate[geodesic[pts][t]], {t, 0, 1},
PlotRange -> {{-π, π}, {-π, π}}, Axes -> True,
AspectRatio -> 1/r]]]

enter image description here


Show[
ParametricPlot3D[
torus[{u, v}], {u, -π, π}, {v, -π, π},
PlotStyle -> White, ImageSize -> 500],
ParametricPlot3D[Evaluate[torus[geodesic[pts][t]]], {t, 0, 1},

PlotStyle -> Red]
]

enter image description here


Unfortunately, for some points, FindRoot becomes very slow or doesn't even find the right solution. (In that case, geodesic still returns a proper geodesic, it just doesn't end where you want it to end.)


So my second attempt uses unconstrained minimization, i.e. I optimize N "control points" along a path to get the shortest path, then interpolate between the control points:


Clear[geodesicFindMin]
geodesicFindMin[{p1_, p2_}, nPts_: 25] :=
Module[{approximatePts, optimizeOffset, optimizeOffsets, direction,
normal, pathLength, optimalPath, interpolations, len, solution},

direction = p2 - p1;
normal = {{0, 1}, {-1, 0}}.direction;

approximatePts = Join[
{p1},
Table[
p1 + i*direction/(nPts + 1) + optimizeOffset[i]*normal, {i,
nPts}],
{p2}];


pathLength = Total[Norm /@ Differences[torus /@ approximatePts]];

{len, solution} =
Quiet[FindMinimum[pathLength,
Table[{optimizeOffset[i], 0}, {i, nPts}]]];
optimalPath = approximatePts /. solution;

interpolations =
ListInterpolation[#, {{0, 1}}] & /@ Transpose[optimalPath];


Function[t, #[t] & /@ interpolations]
]

Usage is the same as before, only this version works much smoother:


LocatorPane[
Dynamic[pts],
Dynamic[ParametricPlot[Evaluate[geodesicFindMin[pts][t]], {t, 0, 1},
PlotRange -> {{-π, π}, {-2 π, 2 π}}, Axes -> True,
AspectRatio -> 2/r]]]


enter image description here


Show[
ParametricPlot3D[
torus[{u, v}], {u, -π, π}, {v, -π, π},
PlotStyle -> Directive[White], ImageSize -> 500],
ParametricPlot3D[Evaluate[torus[geodesicFindMin[pts][t]]], {t, 0, 1},
PlotStyle -> Red]
]

enter image description here



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...