Skip to main content

VertexSize doesn't scale with Graph layout?


I wonder about how I could make a Graph scale automatically when I vary the size of the vertices.


I would like to visualize information with a Graph. The vertices all have e.g. additional info like a weight which I would like to visualize with the vertices drawn with different sizes.


However, when I define the sizes, the graph keeps the original (as opposed to the new) layout. The graph then becomes invisible.



Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3,3 \[UndirectedEdge] 1, 3 \[UndirectedEdge] 4}]

shows:


Standard Graph


Now I add the "weight"


Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3,3 \[UndirectedEdge] 1, 3 \[UndirectedEdge] 4},VertexSize -> {1 -> 1.1, 2 -> 1.2, 3 -> 1.3, 4 -> 1.4}]

This shows:


not scaled


What I would like is that the Graph would be like



nice


Any thoughts?


This is a graph currently working on. As you can see one vertex hits his neighbour. I would expect MM to or reposition this vertex a bit further or to scale down all nodes. Of course this can be done by dividing the vertexes by a number. But this is manual work to see what looks best. I hope there is another way.


other example



Answer



Does the following do what you want?


WeightedGraph[edges_, weights_, options___]:=
Block[{maxweight=Max[#[[2]]&/@weights]},
Graph[edges,VertexSize->((#[[1]]->0.9*#[[2]]/maxweight)&/@weights),options]]


WeightedGraph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3,
3 \[UndirectedEdge] 1, 3 \[UndirectedEdge] 4},
(*weights:*) {1 -> 1.1, 2 -> 1.2, 3 -> 1.3, 4 -> 1.4}]

Mathematica graphics


The second line is basically your Graph call, except that it uses WeightedGraph instead of Graph, and the weights don't have VertexSize-> in front of them.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]