Skip to main content

list manipulation - Format Preservation of FullSimplify on Indexed System of Autonomous Equations


I currently have a large system autonomous differential equations. I've indexed a more managable dummy system of identical form, using Part to reference each individual equation, so:


eqns = {c1' == -kf*c1 + kr*c2, c2 == kf*z1 - kr*z2 - kf*c2, c3' == kp*c2}


with each LHS denoted cn' where n ranges from 0 to 3 (or the # of equations). Inputting eqns[[1]] yields:


c1' == -a kf + b kr

Whereas inputting FullSimplify @ eqns[[1]]yields kf c1 + c1' == kr c2.


Does anyone know a way to specify that the format ought be maintained, ie.


Some Input which would isolate c1' in the FullSimplify term, or yield c1' == kr c2 - kf c1


This sounds petty and is in this dummy example, but isn't for larger systems.


Thank you in advance.


Edit:



I've spent awhile digging around online and in the help to no avail other than possibly changing my notation format, which would render my future use of NDSolve, where I hope to use the shorthand of eqns, problematic given Mathematica's understanding of prime notation for derivatives. (Also, another complication in changing the LHS notation of c1', ..., cn' is in that each is an implicit (rather than explicit) function of (t) (see my attached link in line 1), and so in NDSolve each cn' and cn must be appended with a [t] on the end at some point in the NDSolve function.



Answer



As discussed in chat earlier here the two main issues:


First, to apply FullSimplify only on the RHS of each equation, many ways are possible. One very verbose way is to use replacement rules. The following example shows how to apply a function FS (you can replace this with FullSimplify) only on the RHS of equations having a Derivative as LHS:


eqns = {a'[t] == -k1f a[t] + k1r b[t], 
b'[t] == k1f a[t] - k1r b[t] - k2f b[t], c'[t] == k2f b[t],
a[0] == a0, b[0] == 0, c[0] == 0};

eqns /. ((lhs : Derivative[1][_][t]) == rhs_) :> (lhs == FS[rhs])


Second, although the time $t$ does not appear explicitly in your pde (because it is autonomous), you still have to use it on symbols, which are dependent on the time. The example in the wiki-page you linked was $y'=(2-y)y$, but to use it with NDSolve you have to make the dependency explicit:


NDSolve[{y'[t] == (2 - y[t])*y[t], y[0] == 2}, y, {t, 0, 10}]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...