Skip to main content

image processing - Smoothen the curve found by EdgeDetect


It seems that curves found by EdgeDetect always persist C0 continuity only. Consider the following example:


l = 10; r = Pi/2;
(*Create an image of a smooth curve *)
pic = Rasterize@Plot[ArcTan[x], {x, -l, l}, Filling -> Bottom, Axes -> None,
PlotRangePadding -> None,PlotRange -> r];


(* Recover data points from the image *)
data = ImageValuePositions[Thinning@EdgeDetect@Binarize@pic, 1];

(* Create a interpolating function with the points *)
{w, h} = ImageDimensions@pic;
trf = Last@FindGeometricTransform[{{0, 0}, {0, r}, {l, 0}},
{{w/2, h/2}, {w/2, h}, {w, h/2}}];
func = Interpolation[DeleteDuplicates[trf /@ data, First@# == First@#2 &]];

{{lb, rb}} = func["Domain"]

(* Check the derivatives of func *)
Plot[{ArcTan'[x], func'[x]}, {x, lb, rb}, PlotRange -> {0, 1}]

enter image description here


As one can see, the recovered solution is far from the analytic one, oscillating disastrously, full of noise, in a word, bad. So the question is, with what kind of postprocessing can I get a smooth (C1 continuity, at least) and distortionless interpolating curve? I've played with GaussianFilter and LowpassFilter for a while but the result isn't great.



Answer



In a "natural" image, you'd look at each edge pixel in, use some approximation (e.g. 2nd order polynomial) of the gradients above/below that pixel and calculate the sub-pixel position of the steepest gradient.


But in your case, all EdgeDetect gets to work on is a binary image, and any the potential anti aliasing sub-pixel information is lost. So the best you can probably do is find a curve that is as smooth as possible, while still less than 0.5 pixel from the discrete pixel values EdgeDetect found. You can do that using constrained optimization.


Reusing code from this answer:


xValues = Array[# &, w, func["Domain"]];

discreteValues = func[xValues];

n = Length[discreteValues];
vars = Array[y, n];
maxDist = 0.5 Norm[trf[{0, 0}] - trf[{0, 1}]];

Here are the optimization objectives: find a list of values y[1]..y[n] s.t. the distance to the original values discreteValues[i] is below 0.5 pixels and smoothness as small as possible:


constraints = 
Array[discreteValues[[#]] - maxDist <= y[#] <=
discreteValues[[#]] + maxDist &, n];

smoothness = Total[Differences[vars, 2]^2];
startValues = Array[{y[#], discreteValues[[#]]} &, n];
{fit, sol} =
FindMinimum[{smoothness, constraints}, startValues,
AccuracyGoal -> 10];
smoothedValues = (vars /. sol);

Here's a graphic visualization of the constraints and the results:


zoomStartIdx = 250;
Row[{

ListLinePlot[Transpose[{xValues, smoothedValues}], ImageSize -> 600,
PlotStyle -> Orange,
Epilog -> {EdgeForm[{Gray, Dashed}], Transparent,
Rectangle @@ (Transpose[{xValues,
smoothedValues}][[{zoomStartIdx, -1}]])}],
Show[
ListLinePlot[{Transpose[{xValues, discreteValues - maxDist}],
Transpose[{xValues, discreteValues + maxDist}]}[[All,
zoomStartIdx ;;]],
Filling -> {1 -> {2}}, InterpolationOrder -> 0,

PlotStyle -> Directive[Blue, Thin], ImageSize -> 600],
ListLinePlot[Transpose[{xValues, smoothedValues}],
PlotStyle -> Orange, Mesh -> All, MeshStyle -> PointSize[Medium]]],
LineLegend[{Orange, Blue}, {"Smoothed curve", "Constraints"}]
}]

enter image description here Using (mostly) your code to display the result


(*Create a interpolating function with the points*)
{w, h} = ImageDimensions@pic;
funcSmooth = Interpolation[Transpose[{xValues, smoothedValues}]];


{{lb, rb}} = funcSmooth["Domain"];
(*Check the derivatives of func*)
Plot[{ArcTan'[x], funcSmooth'[x]}, {x, lb, rb}, PlotRange -> All]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]