Skip to main content

graphics - Speeding up this fractal-generating code


I used the code below (which is a sample from this gist containing more similar code) in my answer to my own question about Mandelbrot-like sets for functions other than the simple quadratic on Math.SE to generate this image:


graphic


cosineEscapeTime = 
Compile[{{c, _Complex}},
Block[{z = c, n = 2, escapeRadius = 10 \[Pi], maxIterations = 100},
While[And[Abs[z] <= escapeRadius, n < maxIterations],
z = Cos[z] + c; n++]; n]]


Block[{center = {0.5527, 0.9435}, radius = 0.1},
DensityPlot[
cosineEscapeTime[x + I y], {x, center[[1]] - radius,
center[[1]] + radius}, {y, center[[2]] - radius,
center[[2]] + radius}, PlotPoints -> 250, AspectRatio -> 1,
ColorFunction -> "TemperatureMap"]]

What could I do to improve the speed/time-efficiency of this code? Is there any reasonable way to parallelize it? (I'm running Mathematica 8 on an 8-core machine.)




edit Thanks all for the help so far. I wanted to post an update with what I'm seeing based on the answers so far and see if I get any further refinements before I accept an answer. Without going to hand-written C code and/or OpenCL/CUDA stuff, the best so far seems to be to use cosineEscapeTime as defined above, but replace the Block[...DensityPlot[]] with:



Block[{center = {0.5527, 0.9435}, radius = 0.1, n = 500},
Graphics[
Raster[Rescale@
ParallelTable[
cosineEscapeTime[x + I y],
{y, center[[2]] - radius, center[[2]] + radius, 2 radius/(n - 1)},
{x, center[[1]] - radius, center[[1]] + radius, 2 radius/(n - 1)}],
ColorFunction -> "TemperatureMap"], ImageSize -> n]
]


Probably in large part because it parallelizes over my 8 cores, this runs in a little under 1 second versus about 27 seconds for my original code (based on AbsoluteTiming[]).



Answer



Use these 3 components: compile, C, parallel computing.


Also to speed up coloring instead of ArrayPlot use


Graphics[Raster[Rescale[...], ColorFunction -> "TemperatureMap"]]

In such cases Compile is essential. Compile to C with parallelization will speed it up even more, but you need to have a C compiler installed. Note difference for usage of C and parallelization may show for rather greater image resolution and more cores.


mandelComp = 
Compile[{{c, _Complex}},
Module[{num = 1},

FixedPoint[(num++; #^2 + c) &, 0, 99,
SameTest -> (Re[#]^2 + Im[#]^2 >= 4 &)]; num],
CompilationTarget -> "C", RuntimeAttributes -> {Listable},
Parallelization -> True];

data = ParallelTable[
a + I b, {a, -.715, -.61, .0001}, {b, -.5, -.4, .0001}];

Graphics[Raster[Rescale[mandelComp[data]],
ColorFunction -> "TemperatureMap"], ImageSize -> 800, PlotRangePadding -> 0]


enter image description here


This is just a prototype - you can figure out a better coloring. Another way is to use LibraryFunction - we have Mandelbrot built in:


mlf = LibraryFunctionLoad["demo_numerical", "mandelbrot", {Complex}, 
Integer];
n = 501; samples =
Table[mlf[x + I y], {y, -1.25, 1.25, 2.5/(n - 1)}, {x, -2., .5,
2.5/(n - 1)}];
colormap =
Function[If[# == 0, {0., 0., 0.}, Part[r, #]]] /.

r -> RandomReal[1, {1000, 3}];
Graphics[Raster[Map[colormap, samples, {2}]], ImageSize -> 512]

enter image description here


Now, if you have a proper NVIDIA graphics card you can do some GPU computing with CUDA or OpenCL. I use OpenCL here because I got the source (from documentation btw):


Needs["OpenCLLink`"]

src = "
__kernel void mandelbrot_kernel(__global mint * set, float zoom, \
float bailout, mint width, mint height) {

int xIndex = get_global_id(0);
int yIndex = get_global_id(1);
int ii;

float x0 = zoom*(width/3 - xIndex);
float y0 = zoom*(height/2 - yIndex);
float tmp, x = 0, y = 0;
float c;

if (xIndex < width && yIndex < height) {

for (ii = 0; (x*x+y*y <= bailout) && (ii < MAX_ITERATIONS); \
ii++) {
tmp = x*x - y*y +x0;
y = 2*x*y + y0;
x = tmp;
}
c = ii - log(log(sqrt(x*x + y*y)))/log(2.0);
if (ii == MAX_ITERATIONS) {
set[3*(xIndex + yIndex*width)] = 0;
set[3*(xIndex + yIndex*width) + 1] = 0;

set[3*(xIndex + yIndex*width) + 2] = 0;
} else {
set[3*(xIndex + yIndex*width)] = ii*c/4 + 20;
set[3*(xIndex + yIndex*width) + 1] = ii*c/4;
set[3*(xIndex + yIndex*width) + 2] = ii*c/4 + 5;
}
}
}
";


MandelbrotSet =
OpenCLFunctionLoad[src,
"mandelbrot_kernel", {{_Integer, _, "Output"}, "Float",
"Float", _Integer, _Integer}, {16, 16},
"Defines" -> {"MAX_ITERATIONS" -> 100}];

width = 2048;
height = 1024;
mem = OpenCLMemoryAllocate[Integer, {height, width, 3}];


res = MandelbrotSet[mem, 0.0017, 8.0, width, height, {width, height}];

Image[OpenCLMemoryGet[First[res]], "Byte"]

enter image description here


References:


Fractals CDF paper


Compile to C


LibraryFunction


OpenCL



Demonstrations


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]