Skip to main content

graphics - Rasterize: Resolution option not working properly



Bug introduced in 7 or earlier and persisting through 12.0
Bug isn't present in version 5.2




Something about Rasterize which doesn't seem to work as intended.


Recipe:




  1. Make some simple vector graphics:


    Test = Graphics[Circle[{0, 0} 1]]



  2. Try to rasterize it having defined ImageSize and ImageResolution:


    TestNew = Rasterize[Test, "Image", ImageResolution -> 300, ImageSize -> 72]

    ImageSize set to 72 means that the resulting image should have exactly 1 inch in size on the screen, since screen resolution is 72 pixels per inch. This is okay.


    ImageResolution set 300 means that this image should have dimensions 300 over 300, since ImageResolution is defined in printer dots per inch and the image has the size of one inch.




  3. However, check image dimensions:


    ImageDimensions[TestNew]


    To discover that it is 72.




Moreover: the result does not depend at all on ImageResolution option. From documentation: "RasterSize and ImageResolution determine the coarseness of rasterization; ImageSize determines the size at which the final image will be displayed." If I vary RasterSize, the coarseness indeed changes. If I vary ImageResolution, the coarseness stays the same.


My system: Ubuntu 14, MMA10.0.1


Questions:




  1. Can anyone reproduce the behaviour? (done; yes)





  2. If it's not a bug, what is the reason? (mostly done: technical reason wonderfully explained by Alexey Popkov; this will be updated after the answer from WRI support is available)




  3. Could someone try this on older MMA versions? (done: See Alexey's comment to his answer: ImageResoltution is overriden by ImageSize in V7, but not in V5)




Edit: The result I would want to obtain in the above example can be obtained by calling:


TestNew = Rasterize[Test, "Image", RasterSize -> 300, ImageSize -> 72]


Or, for general image sizes:


Rasterize[Test, "Image", ImageResolution -> , ImageSize -> ()*(72/2.54)]

should give the same result as:


Rasterize[Test, "Image", RasterSize -> (/2.54)*(), ImageSize -> ()*(72/2.54)]

In other words, ImageResolution and RasterSize seem to serve the same purpose, but the former one doesn't seem to work as it should.


Status update: According to the feedback from WRI: The question has been acknowledged as an issue. However it is not decided yet, how exactly it is to be resolved.



Answer




With a bit of spelunking I extracted the following from


g = Graphics[{Circle[], FontSize -> 20, Text["x^2+y^2<1", {0, 0}]}, ImageSize -> 72];
Trace[Rasterize[g, ImageSize -> 72, ImageResolution -> 100]]

in v.10.0.1.




An excerpt from the Trace output


1) At first, the value of RasterSize is extracted from the Rasterize command using OptionValue:


System`ConvertersDump`rs$ = 
OptionValue[Rasterize, {ImageSize -> 72, ImageResolution -> 100}, RasterSize]



Automatic

2) In our case RasterSize is Automatic (the default value) and hence on the following line the value of ImageSize option (which has dimensionality of printer's points, i.e. the base unit is inch) is incorrectly taken as RasterSize (which has dimensionality of pixels) without taking into consideration ImageResolution:


If[System`ConvertersDump`rs$ === Automatic, 
System`ConvertersDump`rs$ =
OptionValue[Rasterize, {ImageSize -> 72, ImageResolution -> 100},
ImageSize]]



72

3) Now the new value for RasterSize is converted into the form {width, heigh}:


If[! ListQ[System`ConvertersDump`rs$] || Length[System`ConvertersDump`rs$] != 2, 
System`ConvertersDump`rs$ = {System`ConvertersDump`rs$, Automatic}]


{72, Automatic}


4) At the next step final image resolution is calculated from the new RasterSize (note that the original ImageResolution is present but ignored!):


{System`ConvertersDump`w$, System`ConvertersDump`h$} = System`ConvertersDump`rs$;

System`ConvertersDump`ir$ =
System`ConvertersDump`GetIR[
Graphics[{Circle[{0, 0}], FontSize -> 20, Text["x^2+y^2<1", {0, 0}]}, ImageSize -> 72],
{System`ConvertersDump`w$, System`ConvertersDump`h$},
ImageSize -> 72, ImageResolution -> 100]



72

5) And finally the packet is constructed using the obtained value for ImageResolution:


System`ConvertersDump`rdpdata$ = 
System`ConvertersDump`ToRasterDataPacket[
Graphics[{Circle[{0, 0}], FontSize -> 20, Text["x^2+y^2<1", {0, 0}]}, ImageSize -> 72],
{"Rasterize", "BoundingBox"},
ImageResolution -> System`ConvertersDump`ir$, Background -> System`ConvertersDump`bg$,
ColorSpace -> System`ConvertersDump`cs$,
Sequence @@

FilterRules[{ImageSize -> 72, ImageResolution -> 100},
Except[{ImageResolution, Background, ColorSpace}]]]



What happens when ImageSize is not specified


When ImageSize is not specified, everything is the same up to the step 4):


System`ConvertersDump`ir$ = 
System`ConvertersDump`GetIR[
Graphics[{Circle[{0, 0}], FontSize -> 20, Text["x^2+y^2<1", {0, 0}]}, ImageSize -> 72],
{System`ConvertersDump`w$, System`ConvertersDump`h$},

ImageResolution -> 100]


100

We see that when the new value of RasterSize is {Automatic, Automatic} the original value of ImageResolution is taken as the final value for image resolution at this step.




Conclusion


From the above it is clear that the key option which currently determines the image resolution in Rasterize is not ImageResolution but RasterSize.


The mechanism of the inconsistent behavior described in the question is as follows: when non-Automatic ImageSize is specified without RasterSize it is taken as ImageResolution. This contradicts to the documented meaning of these options: ImageSize specifies the size of the image in printer's points where inch is the base unit while ImageResolution has dimensionality of dots per inch.



At the same time the combination RasterSize + ImageSize works as expected in accord with the Documentation. So the workaround is to use RasterSize and do not rely on ImageResolution.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...