Skip to main content

fitting - Keeping Nonlinear Model Fit Real


So I am using the NonlinearModelFit (NLM) command with a fairly simple function. There are 4 unknowns and the (x, y) points that I am fitting the function to. I am getting my approximations from a Manipulate so I can just tweak the values till it's close enough. But once I get the values into the NLM, I get this error about the function value not being a real number at these values (not the same values that I put into the NLM). I have tried several different sets of values and every time I get the same error. I do have two constraints that keep two of my values positive.



R = 0.42; Sigma = 73.06967052; Theta=1.32757;

nData={{0.989939, 4.62}, {0.989939, 4.64}, {0.989939, 4.66},
{0.989939, 4.68}, {0.989939, 4.7}, {0.989939, 4.72},
{0.989939, 4.74}, {0.989939, 4.76}, {0.989939, 4.78},
{0.989939, 4.8}, {0.99398, 4.82}, {0.99398, 4.84},
{0.99398, 4.86}, {0.99398, 4.88}, {0.99398, 4.9},
{0.99398, 4.92}, {0.99398, 4.94}, {0.99398, 4.96},
{0.99398, 4.98}, {0.99398, 5}, {0.99398, 5.02},
{0.99398, 5.04}, {0.99398, 5.06}, {0.99398, 5.08},

{0.99398, 5.1}};

nlm = NonlinearModelFit[
nData,
{((3 + s)/(1 + s) 1/R (h + dh)^(1 + s))* ((p/(Sigma*Cos[Theta]))^s)*
Hypergeometric2F1[1 + s, s, 2 + s, (h + dh)/h0], s > 0, p > 0},
{{p, 0.207}, {s, 1}, {h0, 2.04}, {dh, 0.9}}, h
]


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]