Skip to main content

programming - Sum over n variables


What is the most painless way to sum over n variables, for example, if the range of summation is $i_1 < i_2 < i_3 < \dots < i_n$, where $n$ is an argument of the function in question?


Is there a package for this and more complex summation ranges?


I am not happy with programming loops all the time for this common summation range and if one has a large summation range, one cannot just use a combinat command to generate all subsets of a certain size, if this takes too much memory.


Example:


$$f(n)=\sum_{0 < i_1 < i_2 < \dots < i_n < 2n+1} \qquad \prod_{1\le r < s \le n} (i_s-i_r) $$



Answer



You can write a few helper functions to help you. The following can probably be streamlined...



vars[s_String, n_Integer?Positive] := Table[Symbol[s <> ToString[i]], {i, 1, n}]
vars[sym_Symbol, num_] := vars[SymbolName[sym], num]

nestedRange[vars_List, min_, max_] /; min <= max :=
Transpose@{vars, ConstantArray[min, Length[vars]], Append[Rest@vars, max]}

nestedSum[f_, vars:{__Symbol}, min_, max_] /; min <= max :=
With[{r = Sequence @@ Reverse@nestedRange[vars, min, max]}, Sum[f, r]]
nestedSum[f_, {var:(_String|_Symbol), num_Integer?Positive},
min_, max_] /; min <= max := nestedSum[f, vars[var, num], min, max]


Then, for example


nestedSum[f[a, b, c], {a, b, c}, 0, Infinity] // TraditionalForm

produces screenshot


A larger sum is


In[]:= nestedSum[Total@vars[i, 4], {i, 4}, 1, 20] // Timing
Out[]= {0.016001, 371910}

which can be compared with evaluating the same thing using Boole



In[]:= v = vars[i, 4];
With[{r = Sequence@@Table[{n, 1, 20}, {n, v}]},
Sum[Boole[LessEqual@@v] Total@v, r]] // Timing
Out[]= {0.056003, 371910}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],