Skip to main content

Finding the intersection of two date lists


I've got two lists that look like this


list1={{"1/01/2010 6:15", 0.0565625}, {"11/06/2010 0:15",0}, {"11/06/2010 0:30", 0},{"11/06/2010 0:45",0}, {"11/06/2010 1:00", 0}}


list2={{"01/01/2010 06:15", 0.04375}, {"01/01/2010 06:30",0.04375}, {"01/01/2010 06:45", 0.04375}, {"01/01/2010 07:00",0.04375}, {"01/01/2010 07:15", 0.04375}}

What I want to do is create a list that looks like this;


list3={{"1/01/2010 6:15", 0.0565625, 0.04375},{{"01/01/2010 06:30",,0.04375},......}

Either list may have gaps in it. It's not important that all the gaps be filled (if the date is missing from both list1&2 then it can be missing from list3). What is important is that it's fast, the data set is about 100,000 records.



Answer



I confess to being allergic to database operations that require data to be in a particular sort order: it's too easy for huge mistakes to creep in. What is needed here is to turn the source list (say, list1) into a lookup table so it reliably returns its value (second element in the list) when given its key (first element in the list).


To assure reliability of key matches, let's first convert strings into bona fide dates:


l1 = {DateList[First[#]], Last[#]} & /@  list1;

l2 = {DateList[First[#]], Last[#]} & /@ list2;

Now convert the source list into a rule dispatch table:


rules = Dispatch[Flatten[({First[#] -> Sequence @@ #} & /@  l1), 1]]

(This can take some time with 100,000 entries: my system requires almost ten seconds. I consider the wait to be worthwhile. But be careful if the source list is much longer than this!)


These rules can repeatedly be applied to any number of target lists:


l2 /. rules // MatrixForm



({{2010,1,1,6,15,0.},0.0565625,0.04375}{{2010,1,1,6,30,0.},0.04375}{{2010,1,1,6,45,0.},0.04375}{{2010,1,1,7,0,0.},0.04375}{{2010,1,1,7,15,0.},0.04375})



When the target has 100000 elements and there are 100000 source elements, this last step still takes only 0.25 seconds.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...