Skip to main content

finite element method - How to solve a nonlinear coupled PDE with initial and some boundary values


I would like to solve the following nonlinear coupled PDE with a mix of initial conditions and boundary values:


rMax = 0.01;
sol = First@NDSolve[{
Derivative[2, 0][g][r, z] + Derivative[0, 2][g][r, z] == u[r, z]^2,
Derivative[2, 0][u][r, z] + Derivative[0, 1][u][r, z] == -g[r, z],
Derivative[1, 0][u][0, z] == 0.0,
Derivative[1, 0][u][rMax, z] == 0.0,
u[rMax, z] == 0.0,
u[r, 0] == g[r, 0] == Sin[\[Pi] r/rMax],

Derivative[1, 0][g][0, z] == g[rMax, z] == 0.0},
{u, g}, {r, 0, rMax}, {z, 0, 0.01}]

but I receive the following error message (in version 10.0.1.0):


NDSolve::femnonlinear: Nonlinear coefficients are not supported in this version of NDSolve.


The offender is the square term u[r, z]^2 in the first equation; without the square NSolve[] executes without errors. NDSolve seems to apply the FEM method by default to such problems. I'm wondering why NDSolve[] doesn't switch back to another (propagation-type) algorithm? When I add the option Method -> "MethodOfLines", the error message changes to


NDSolve::ivone: Boundary values may only be specified for one independent variable. Initial values may only be specified at one value of the other independent variable.


and I don't quite understand why this is because my time-like variable is z and I'm setting initial conditions only for z=0 and then boundary conditions at r=0 and r=rMax which should be OK?


Any ideas how to solve my problem? Another post suggested calling low-level FEM routines directly, is this a solution? What's the advantage of using FEM on an initial condition/boundary value problem over other methods: speed, accuracy, robustness?




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...