Skip to main content

hold - How do I restore HoldAll, HoldFirst, HoldRest attributes of Inactivated functions


Let f be defined as follows:


ClearAll[f];
SetAttributes[f, HoldFirst];

f[1+1]
(* f[1+1] *)


The 1+1 stays as is. But if I Inactivate f:


Inactive[f][1+1]
(* f[2] *)

it has the paradoxical effect of reactivating the held 1+1, making it evaluate to 2. How do I prevent Inactive from killing the attributes of f?


note: I am looking for a solution that solves the problem of losing attributes, not one of deactivating 1+1 by doing f[1+1] // Inactivate



Answer




I'm not aware of any way to hold evaluation of arguments in expression of form Inactive[f][arguments], which is how inactivated expressions look like. What we can do, to prevent evaluation of arguments, is to use a symbol with appropriate Hold... attribute, instead of Inactive[f] expression. This symbol should have no DownValues that could evaluate when arguments are passed to it.



Below I present two approaches to this problem. First is based on custom (in)activate functions, creating "dummy" symbols on the fly, for each inactivated symbol with Hold... attribute. Second attaches special inactivation behavior to specific symbols, which causes them to evaluate to custom inactive heads.


Basic examples


When we have a function with a Hold... attribute.


ClearAll[f]
SetAttributes[f, HoldFirst]
f[x_, y_] := Hold[x, y]

f[1 + 1, 2 + 2]
(* Hold[1 + 1, 4] *)


Ordinary inactivation of this function causes evaluation of its arguments:


Inactivate[f[1 + 1, 2 + 2], f]
% // FullForm
% // Activate
(* f[2, 4] *)
(* Inactive[f][2, 4] *)
(* Hold[2, 4] *)

so expression after inactivation and activation is different than if it would evaluate without inactivation involved.


With first, presented below, approach one can do:



holdingInactivate[f[1 + 1, 2 + 2], f]
% // FullForm
% // holdingActivate
(* f[1 + 1, 4] *)
(* inactive`Global`f[Plus[1, 1], 4] *)
(* Hold[1 + 1, 4] *)

with second approach:


setHoldingInactivation[f];
Inactivate[f[1 + 1, 2 + 2], f]

% // FullForm
% // Activate
(* f[1 + 1, 4] *)
(* holdingInactiveHoldFirst[Plus[1, 1], 4, Hold[Inactive[f]]] *)
(* Hold[1 + 1, 4] *)




Let's start with some helper symbols used in both approaches.


ClearAll[symPatt, holdAttrs, hasHoldAttrQ, getHoldAttr]

symPatt = Except[HoldPattern@Symbol[___], _Symbol];
holdAttrs = HoldFirst | HoldRest | HoldAll | HoldAllComplete;
hasHoldAttrQ = Function[, MemberQ[Attributes[#], holdAttrs], HoldFirst];
getHoldAttr = Function[, FirstCase[Attributes[#], holdAttrs], HoldFirst];

Dummy "inactive" symbols


In this approach we define custom holdingInactivate, holdingActivate and ignoringHoldingInactive functions that should be used instead of built-in Inactivate, Activate and IgnoringInactive.


holdingInactivate inactivates expression and replaces each inactive symbol, that has Hold... attribute, with symbol specially defined in inactive` context. This special symbol has same Hold... attribute as replaced one, and is formatted as inactive replaced symbol.


holdingActivate activates expression and replaces symbols from inactive` context with original symbols.


ignoringHoldingInactive returns IgnoringInactive expression with certain symbols replaced by Alternatives of original symbol and its dummy "inactive" counterpart, so returned pattern will match both active and inactive versions of expressions.



We start with some helper functions.


ClearAll[
$inactiveContext, inactiveSymbolQ, toInactiveSymbol, fromInactiveSymbol,
postprocessInactiveBoxes, defineInactiveSymbol, $inactivateExclusions,
$inactivateExclusionsHeld, $basicInactivePatternRules,
inactivePatternReplace
]

$inactiveContext = "inactive`";


inactiveSymbolQ[s:symPatt] := StringMatchQ[Context[s], $inactiveContext <> "*"]
inactiveSymbolQ[expr_] = False;

toInactiveSymbol[inactSym:symPatt?inactiveSymbolQ] := inactSym
toInactiveSymbol[s:symPatt] :=
Symbol[$inactiveContext <> Context[s] <> SymbolName@Unevaluated[s]]

fromInactiveSymbol[inactSym:symPatt?inactiveSymbolQ] :=
Symbol@StringJoin[
StringDrop[Context[inactSym], StringLength[$inactiveContext]],

SymbolName@Unevaluated[inactSym]
]
fromInactiveSymbol[s:symPatt] := s

SetAttributes[postprocessInactiveBoxes, HoldAllComplete]
postprocessInactiveBoxes[_, hISym_][
RowBox[{TemplateBox[tbArg_, "InactiveHead", opts___], "[", args___, "]"}]
] :=
With[{tooltip = ToString[Unevaluated[hISym], InputForm]},
RowBox[{

InterpretationBox[
TemplateBox[tbArg, "InactiveHead", Tooltip -> tooltip, opts],
hISym
],
"[", args, "]"
}]
]
postprocessInactiveBoxes[expr_, _][boxes_] := InterpretationBox[boxes, expr]

defineInactiveSymbol[h:symPatt /; Not@inactiveSymbolQ[h]] :=

With[{holdAttr = getHoldAttr[h]},
With[{hISym = toInactiveSymbol[h]},
ClearAll[hISym];
SetAttributes[hISym, holdAttr];
hISym /: MakeBoxes[expr : hISym[args___], form_] :=
postprocessInactiveBoxes[expr, hISym]@
MakeBoxes[Inactive[h][args], form];
hISym
] /; Not@MissingQ[holdAttr]
]


$inactivateExclusions =
Alternatives @@ Replace[Developer`$InactivateExclusions, {
{sym_, "Symbol"} :> sym,
{sym_, "Expression"} :> Blank[sym]
}, 1];

$inactivateExclusionsHeld =
Alternatives @@ Cases[Developer`$InactivateExclusions,
{

sym_ /; MemberQ[Attributes[sym], HoldAll | HoldAllComplete],
"Symbol"
} :> Blank[sym]
];

$basicInactivePatternRules = {
excl:$inactivateExclusions :> excl,
h:symPatt /; Not@inactiveSymbolQ[h] :>
With[{inactSym = toInactiveSymbol[h]}, h | inactSym /; True]
};


inactivePatternReplace[expr_] :=
Quiet[
Unevaluated[expr] /. {
(h : Condition | PatternTest | Repeated)[patt_, rest___] :>
With[{replaced = inactivePatternReplace[patt]},
h[replaced, rest] /; True
],
Verbatim[Pattern][name_, patt_] :>
With[{replaced = inactivePatternReplace[patt]},

Pattern[name, replaced] /; True
],
Verbatim[Verbatim][verb_] :>
With[
{replaced =
Unevaluated[verb] /. $basicInactivePatternRules
},
Verbatim[replaced] /; True
],
(bl : Blank | BlankSequence | BlankNullSequence)[

h:symPatt /; Not@inactiveSymbolQ[h]
] :>
With[{inactSym = toInactiveSymbol[h]},
bl[h] | bl[inactSym] /; True
],
Sequence @@ $basicInactivePatternRules
},
RuleDelayed::rhs
]


SetAttributes[{
inactiveSymbolQ, toInactiveSymbol, fromInactiveSymbol,
defineInactiveSymbol, inactivePatternReplace
}, HoldFirst]

Now three "public" functions.


ClearAll[holdingInactivate, holdingActivate, ignoringHoldingInactive]

SetAttributes[holdingInactivate, HoldFirst]
holdingInactivate[expr_, patt_:_, opts:OptionsPattern[Inactivate]] :=

Inactivate[Hold[expr], patt, opts] //.
Inactive[h:Except[Except[_Symbol] | Except[patt]]][args___] :>
With[{hISym = defineInactiveSymbol[h]},
hISym[args] /; MatchQ[hISym, symPatt]
] //
ReleaseHold

holdingActivate[expr_, patt_:_, opts:OptionsPattern[Activate]] :=
Activate[expr, patt, opts] /. h:patt?inactiveSymbolQ :> fromInactiveSymbol[h]


ignoringHoldingInactive[expr_] :=
IgnoringInactive[expr] /. {
excl:$inactivateExclusionsHeld | $inactivateExclusions :> excl,
(h:symPatt /; hasHoldAttrQ[h] && Not@inactiveSymbolQ[h])[args___] :>
HoldPattern@h[args]
} // Evaluate // inactivePatternReplace

Usage example:


ClearAll[f, g, h]
SetAttributes[f, HoldFirst]

SetAttributes[g, HoldAll]

testExpr = f[1 + 1, g[1 + 1, 1 + 1], 2, f[1 + 1]][h[2], 2, f[1 + 1]]
inactiveTestExpr = holdingInactivate[Evaluate[%], f | g | h]
% // FullForm
% // holdingActivate

print screen of inactivation with dummy symbols


Pattern wrapped with ignoringHoldingInactive will match both active and inactive versions of same expression:


MatchQ[testExpr, ignoringHoldingInactive[testExpr]]

(* True *)
MatchQ[inactiveTestExpr, ignoringHoldingInactive[testExpr]]
(* True *)

It can be also used to manipulate inactive expression:


inactiveTestExpr /. {
ignoringHoldingInactive[f[arg : 1 + _]] :> Hold[arg],
ignoringHoldingInactive[gExpr_g] :> 5 + gExpr
}


print screen of replacement using ignoringHoldingInactive


Attaching special inactivation behavior to symbols


In this approach we attach special behavior to some of symbols that are supposed to be inactivated. Inactivation and activation is performed using built-in Inactivate and Activate.


We set special UpValues, for e.g. f symbol, causing Inactive[f][args] to evaluate to holdingInactive...[args, Hold@Inactive[f]], where holdingInactive... is head with same Hold... attribute as f. We keep f itself in last argument of holdingInactive..., this way expression can be appropriately formatted and, when activated, can automatically evaluate to original f[args].


Since special behavior, during both inactivation and activation, depends on evaluation, Inactive[f][args] expressions will not be replaced by holdingInactive... expression if it's inside some holding wrapper itself. This will not cause any problems with evaluation of f's arguments (since it's in holding wrapper they will not evaluate), but under the hood inactive expression can be slightly inconsistent and can contain both Inactive[f][args] and holdingInactive...[args, Hold@Inactive[f]], which might be inconvenient when manipulating inactive expression. When part of inactive expression is allowed to evaluate, then held, then activated, it may happen that we end up with expression containing holdingInactive... that will remain there until it's allowed to evaluate.


ClearAll[holdingInactive, setHoldingInactivation]

(* Define four holdingInactive... functions one for each Hold... atribute. *)
Scan[
With[{head = Symbol["holdingInactive"<>ToString[#]]},

ClearAll[head];
SetAttributes[head, #];
head[args___, Hold[h:Except@Inactive[_]]] := h[args];
head /: MakeBoxes[expr:head[args___, Hold[h:Inactive[_]]], form_] :=
InterpretationBox[#, expr]&@MakeBoxes[h[args], form];
holdingInactive[#] = head
]&,
holdAttrs
]


SetAttributes[setHoldingInactivation, Listable]
setHoldingInactivation[h_Symbol] :=
With[{holdAttr = getHoldAttr[h]},
With[{holdingInactiveFunc = holdingInactive[holdAttr]},
h /: Inactive[h] =
Function[,
holdingInactiveFunc[##, Hold@Inactive[h]],
HoldAllComplete
];
h

] /; Not@MissingQ[holdAttr]
]

Usage example:


ClearAll[f, g, h]
SetAttributes[f, HoldFirst]
SetAttributes[g, HoldAll]

setHoldingInactivation[{f, g}]
(* {f, g} *)


f[1 + 1, g[1 + 1, 1 + 1], 2, f[1 + 1]][h[2], 2, f[1 + 1]]
Inactivate[Evaluate[%], f | g | h]
% // FullForm
% // Activate

print screen of result with custom inactive heads


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.