Skip to main content

list manipulation - Faster trimming of leading/trailing zeroes in rectangular array


Given a (large) rectangular array, e.g. (small for example case):


Column[{test, test // MatrixForm}, Left, 2]

(*

{{1, 3, 0, 3, 0}, {1, 3, 0, 3, 3}, {0, 2, 3, 1, 3}, {2, 0, 0, 0, 0},
{2, 0, 2, 3, 1}, {0, 0, 0, 0, 0}, {0, 0, 1, 0, 0}}
*)

enter image description here


I need to remove any leading/trailing zeroes from rows, dropping row if all zeroes, e.g. with above the result s/b


(* {{1, 3, 0, 3}, {1, 3, 0, 3, 3}, {2, 3, 1, 3}, {2}, {2, 0, 2, 3, 1}, {1}} *)

I'm using


trim0 = With[{t = DeleteCases[#, ConstantArray[0, Length@#[[1]]]]}, 

MapIndexed[t[[First@#2, #1[[1]] ;; #1[[-1]]]] &, SparseArray[t]["AdjacencyLists"]]] &;

Might there be a faster method?


N.B.: Currently, I'm working with arrays of non-negative integers, so if that can be used to speed things (above is general)...



Answer



idtz = Internal`DeleteTrailingZeros; 
trim0a = With[{t = Reverse/@ idtz/@DeleteCases[#, ConstantArray[0, Length@#[[1]]]]},
Reverse /@ idtz /@ t] &;

trim0b = With[{t = DeleteCases[#, ConstantArray[0, Length@#[[1]]]]},

Fold[idtz@#2@# &, #, {Reverse, Reverse}] & /@ t] &;

Equal @@ (#@test & /@ {trim0, trim0a, trim0b})
(* True *)

Some timings:


n = 5000; m = 5000; k = 1;
testmat = RandomChoice[{k, 1, 1, 1} -> Range[0, 3], {n, m}];
rslt = {0, 0, 0}; i = 1;
First[AbsoluteTiming[rslt[[i++]] = #@testmat ;]] & /@ {trim0, trim0a, trim0b}

(* {1.900441, 1.351605, 0.965583} *)
Equal @@ rslt
(* True *)

n = 5000; m = 5000; k = 5;
(* {1.265648, 1.555662, 1.140635} *)
n = 1000000; m = 10; k = 1;
(* {6.119162, 4.407390, 5.105766} *)
n = 1000000; m = 10; k = 5;
(* {5.770310, 4.532018, 5.306773} *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...