Skip to main content

Solving a system of linear equations modulo n


I have a system of linear equations


$$ a+b+c \equiv 31 \pmod{54} $$ $$ 4a+2b+c \equiv 3 \pmod{54} $$ $$ 9a+3b+c \equiv 11 \pmod{54} $$


What should I input (I'm using LinearSolve)? It doesn't seem to work for composite modulo numbers. I have been unable to get Mathematica to give me all the possible solutions.



Answer



Working with LinearSolve we encounter some inconsistency of the related option Modulus -> z if z is not prime. Nonetheless we could do this


Mod[ LinearSolve[ {{1, 1, 1}, {4, 2, 1}, {9, 3, 1}}, {31, 3, 11}], 54]


{18, 26, 41}


Unfortunately we can get only one solution unlike when working with Solve. These posts describe another problems or bugs related to Modulus or Mod:


Solving/Reducing equations in Z/pZ
Strange behaviour of Reduce for Mod[x,1]


Note that the latter points some bugs present in versions 7 and 8 which have been fixed in version 9 of Mathematica.


Even though LinearSolve doesn't appear to be an appropriate approach w can use the Modulus option in another equation-solving functionality like e.g.: Solve or Reduce and in some other functions related to algebraic manipulations. This yields a symbolic result:


Solve[{  a + b + c   == 31, 
4 a + 2 b + c == 3,
9 a + 3 b + c == 11}, {a, b, c}, Modulus -> 54]



{{a -> 18 + 27 C[1], b -> 26 + 27 C[1], c -> 41}}

To get a full list of solutions we should put the result in a table, (changing generated parameters since they are protected to another ones e.g. k). We can see that we need the table of length two only otherwise we would get may duplicates.


Table[ Mod[{a, b, c} /. %, 54] /. C[1] -> k, {k, 2}]


{{{45, 53, 41}}, {{18, 26, 41}}}

These are all solutions of the related system $\mod 54$:



Apply[{ Mod[#1 + #2 + #3, 54] - 31, 
Mod[4 #1 + 2 #2 + #3, 54] - 3,
Mod[9 #1 + 3 #2 + #3, 54] - 11}&, %, {2}]


  {{{0, 0, 0}}, {{0, 0, 0}}}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],