Skip to main content

probability or statistics - FindDistributionParameters fails with custom distribution?


Context


I would like to find the MaximumLikelihood solution of a customized PDF


Let's start with a built in PDF. Following the documentation


dat = RandomVariate[LaplaceDistribution[2, 1], 1000];
param=FindDistributionParameters[dat, LaplaceDistribution[μ, σ],
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]


(* {μ->2.27258,σ->0.521354} *)


Show[Plot[
PDF[LaplaceDistribution[μ, σ] /. param, x], {x, -5, 5}],
Histogram[dat, Automatic, "PDF"]]

Mathematica graphics


works as expected. It finds a good estimator of $\mu$ and $\sigma$.


The problem


Now let me do the same with a customized PDF. Here I just impose that my custom PDF cannot be evaluated before it is given numerical values.


Clear[myLaplaceDistribution];

myLaplaceDistribution[μ_?NumberQ, σ_?NumberQ] :=
LaplaceDistribution[μ, σ]

Then


dat = RandomVariate[LaplaceDistribution[2, 1], 10];
FindDistributionParameters[dat, myLaplaceDistribution[μ, σ],
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]

does not return a maximum likelihood estimate.


I am using 10.3.0 for Mac OS X x86 (64-bit) (October 9, 2015)



Question:



Any suggestions on how to make FindDistributionParameters work with unevaluated PDFs?



PS: I am aware of this https://mathematica.stackexchange.com/a/107914/1089 but here this question is a bit more general than simply a transformed distribution? And I have tried


dat = RandomVariate[LaplaceDistribution[2, 1], 10];
FindDistributionParameters[dat,
myLaplaceDistribution[μ, σ], {{μ,
Mean[dat]}, {σ, Mean[dat]}},
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]


it does not seems to help.


Update


This related answer https://mathematica.stackexchange.com/a/61426/1089 does not seem to help.


If I define explicitly the domain for the PDF


  Clear[myLaplaceDistribution2];
myLaplaceDistribution2[μ_?NumberQ, σ_?NumberQ] :=
ProbabilityDistribution[
PDF[LaplaceDistribution[μ, σ], x], {x, -Infinity,
Infinity}, Assumptions -> (μ ∈ Reals && σ > 0)]


It still fails


dat = RandomVariate[LaplaceDistribution[2, 1], 10];
FindDistributionParameters[dat,
myLaplaceDistribution2[μ, σ], {{μ,
Mean[dat]}, {σ, Mean[dat]}},
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]

As @J.M. points out one can use the fact that Mathematica can cope with the fact the PDF need not be normalized. As follows


Clear[myLaplaceDistribution3];

myLaplaceDistribution3[μ_, σ_] =
ProbabilityDistribution[
2 PDF[LaplaceDistribution[μ, σ],
x], {x, -∞, ∞},
Assumptions -> (μ ∈ Reals && σ > 0),
Method -> "Normalize"]

(Note the factor of 2 in front of PDF to make the PDF not normalized.)


Then


dat = RandomVariate[LaplaceDistribution[2, 1], 10];

FindDistributionParameters[dat, myLaplaceDistribution3[μ, σ],
ParameterEstimator -> {"MaximumLikelihood"}]

works.



I still think there must be situations where the PDF cannot be known before its arguments are known, and where Maximum likelihood analysis would make sense?



Note that I can always make my own:


MyFindDistributionParameters[data_, distrib_, var_] :=
NMaximize[{Total[Log@ PDF[distrib, #] & /@ data],

DistributionParameterAssumptions[distrib]}, var][[2]];

MyFindDistributionParameters[dat,LaplaceDistribution[μ, σ], {μ, σ}]

but I was hoping Mathematica would provide me with a more efficient algorithm? (this seems to be 10 times slower than the built in function).



Answer



If you follow @J.M. 's advice removing ?NumberQ from the definition of the probability distribution makes everything work fine:


Clear[myLaplaceDistribution];
SeedRandom[12345];
myLaplaceDistribution[μ_, σ_] := LaplaceDistribution[μ, σ]

dat = RandomVariate[LaplaceDistribution[2, 1], 10];
FindDistributionParameters[dat, myLaplaceDistribution[μ, σ],
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]
(* {μ -> 1.8804870321227085,σ -> 0.7153183538699862} *)

I don't know what you mean by "Here I just impose that my custom PDF cannot be evaluated before it is given numerical values." Your first example doesn't have the two parameters evaluated as numbers and it works fine:


param=FindDistributionParameters[dat, LaplaceDistribution[μ, σ],
ParameterEstimator -> {"MaximumLikelihood", Method -> "NMaximize"}]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...