Skip to main content

plotting - Tailoring RegionPlot3D with PlotPoints?


This seemingly tame solid gives Mathematica (v9) a bit of a workout if you want to generate a good picture:


rinner[y_] = Sqrt[y];

router[y_] = 1;
RegionPlot3D[rinner[y]^2 <= x^2 + z^2 <= router[y]^2,
{x, -1, 1}, {z, -1, 1}, {y, 0, 1}, AxesLabel -> {x, y, z}, PlotPoints -> 100,
PlotStyle -> Opacity[.75], MeshFunctions -> {#3 &}, Mesh -> 5]

Mathematica graphics


I kept increasing PlotPoints from 100 to 200 to 300 and things get pretty slow---without much of an improvement in the rendering of the choppy part of the region at the top. Bumping up MaxRecursion and PerformanceGoal->"Quality" didn't seem to help.


I tried playing with variations like PlotPoints->{100,100,300} to get better results faster, and this leads to my two questions.



  1. What else should I try? (I experimented with RevolutionPlot3D, but I want solids.)



  2. Is it possible to tailor the placement of PlotPoints to a subset of either


    (a) an axis (say, 10x more points in the $z$ direction, but pack them into $0.9\le z\le 1$?, or


    (b) a specific portion of the overall space (say, $x,y,z$ with $0.9^2\le x^2+y^2\le 1^2$ and $0.9\le z\le 1$, etc.)?




Thanks for any insight.



Answer



If you want to stick with RegionPlot3D but don't want the jagged edges, then you can smooth them by excluding the creased line from the plot region:


rinner[y_] = Sqrt[y];

router[y_] = 1;
ε = .05;
RegionPlot3D[(rinner[y])^2 <= x^2 + z^2 <= (router[y])^2 &&
router[y] - rinner[y] > ε, {x, -1, 1}, {z, -1, 1}, {y, 0,
1}, AxesLabel -> {x, y, z}, PlotPoints -> 100,
PlotStyle -> Opacity[.75], MeshFunctions -> {#3 &}, Mesh -> 5]

rounded


Edges are always rounded in RegionPlot3D anyway, so rounding them by hand as I did here with the parameter ε may be acceptable.


The small parameter ε determines how close the inner and outer walls are allowed to come - thus preventing them from touching. The choice of PlotPoints will determine how small you can make ε.



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...