Skip to main content

numerics - Converting to machine precision


There are multiple ways to convert an expression to machine precision, for example:


In[1]:= a = Sqrt[2]
Out[1]= Sqrt[2]

In[2]:= {1.a, 1`a, N@a, SetPrecision[a,MachinePrecision]}

Out[2]= {1.41421,1.41421,1.41421,1.41421}

In[3]:= Precision /@ %
Out[3]= {MachinePrecision,MachinePrecision,MachinePrecision,MachinePrecision}

My question is whether or not these methods are absolutely equivalent. Is it just a matter of personal taste which one to use, or are there examples where they behave differently?



Answer



In terms of speed N and SetPrecision can be expected to be faster as they do not involve an unnecessary multiplication. (Conversely 2` * a would be better than N[2 * a] because the latter does exact multiplication before the conversion.)




1. a and 1` a can be considered identical because they represent the same input. Personally I have taken to using the latter form for entering machine-precision integers because the syntax better reminds me of the purpose.





One can see that N and SetPrecision[#, MachinePrecision] & are, if not equivalent, closely related. Observe:


N[thing] := 17.5

NValues[thing]


{HoldPattern[N[thing, {MachinePrecision, MachinePrecision}]] :> 17.5}

Now:



N[thing]

SetPrecision[thing, MachinePrecision]


17.5

17.5

The fact that NValues output is given from SetPrecision indicates to me that it is using a common mechanism.



On-the-fly conversion does not use NValues:


1. thing

2` + thing


1. thing

2. + thing




Here is another demonstrable difference between N/SetPrecision and multiplication by 1.:


N[ Exp[1000] ]                            // Precision

SetPrecision[Exp[1000], MachinePrecision] // Precision

1. Exp[1000] // Precision


12.9546


12.9546

15.9546

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.