Skip to main content

numerics - Converting to machine precision


There are multiple ways to convert an expression to machine precision, for example:


In[1]:= a = Sqrt[2]
Out[1]= Sqrt[2]

In[2]:= {1.a, 1`a, N@a, SetPrecision[a,MachinePrecision]}

Out[2]= {1.41421,1.41421,1.41421,1.41421}

In[3]:= Precision /@ %
Out[3]= {MachinePrecision,MachinePrecision,MachinePrecision,MachinePrecision}

My question is whether or not these methods are absolutely equivalent. Is it just a matter of personal taste which one to use, or are there examples where they behave differently?



Answer



In terms of speed N and SetPrecision can be expected to be faster as they do not involve an unnecessary multiplication. (Conversely 2` * a would be better than N[2 * a] because the latter does exact multiplication before the conversion.)




1. a and 1` a can be considered identical because they represent the same input. Personally I have taken to using the latter form for entering machine-precision integers because the syntax better reminds me of the purpose.





One can see that N and SetPrecision[#, MachinePrecision] & are, if not equivalent, closely related. Observe:


N[thing] := 17.5

NValues[thing]


{HoldPattern[N[thing, {MachinePrecision, MachinePrecision}]] :> 17.5}

Now:



N[thing]

SetPrecision[thing, MachinePrecision]


17.5

17.5

The fact that NValues output is given from SetPrecision indicates to me that it is using a common mechanism.



On-the-fly conversion does not use NValues:


1. thing

2` + thing


1. thing

2. + thing




Here is another demonstrable difference between N/SetPrecision and multiplication by 1.:


N[ Exp[1000] ]                            // Precision

SetPrecision[Exp[1000], MachinePrecision] // Precision

1. Exp[1000] // Precision


12.9546


12.9546

15.9546

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...