Skip to main content

Front End options


Inspired by a recent question and others like it, and not finding an existing duplicate, I ask:





  • What is the hierarchy of Front End options?




  • How do they work?




  • How can their values be set and recalled?





Answer




Option hierarchy


Quoting John Fultz:



Options work on an inheritance model. ... It all starts someplace. That would be the hard-coded option values in the front end C code. The root of the inheritance of options. Then one typically thinks of $FrontEnd as being the next level down, but there's another level in between. That is $DefaultFrontEnd. So, at the global level, it's -> $DefaultFrontEnd -> $FrontEnd -> $FrontEndSession. But only values set to $FrontEnd get written to your preferences file.



In addition to these global settings many Front End options (or their equivalents) can be set at the Notebook level, with e.g. EvaluationNotebook[], and these, when set, take local priority.


Settings made to the Notebook are saved in the Notebook (.nb). Settings made to $FrontEnd are saved in:


FileNameJoin[{$UserBaseDirectory, "FrontEnd", "init.m"}]

Settings to either $FrontEndSession or $DefaultFrontEnd do not persist between sessions. Settings made to $FrontEndSession override those to $FrontEnd for the duration of the session, while $DefaultFrontEnd are only used if the same option is specified nowhere else.



Setting and recalling option values


$FrontEnd and Notebook options can be set and cleared using the Option Inspector with the menu selections Global Preferences and Selected Notebook respectively. To clear an option click the x next to its option name:


enter image description here


Options can be set and recalled at all levels with SetOptions and Options.
For example one could make the following settings:


SetOptions[$DefaultFrontEnd,     FontColor -> Red    ]

SetOptions[$FrontEnd, FontColor -> Orange ]

SetOptions[$FrontEndSession, FontColor -> Magenta]


SetOptions[EvaluationNotebook[], FontColor -> Blue ]

Many options are aslo accessible and configurable through CurrentValue. An unqualified CurrentValue will show the value lowest in the hierarchy (with the highest priority):


CurrentValue[FontColor] // InputForm


RGBColor[0, 0, 1]  (* blue *)

A qualified CurrentValue will show the other settings as well:



CurrentValue[#, FontColor] & /@
{$DefaultFrontEnd, $FrontEnd, $FrontEndSession} // InputForm


{RGBColor[1, 0, 0],    (* red     *)
RGBColor[1, 0.5, 0], (* orange *)
RGBColor[1, 0, 1]} (* magenta *)

The qualified form may be used to set option values:


CurrentValue[EvaluationNotebook[], FontColor] = Green;


If the Notebook option is cleared through the Option Inspector, or a new Notebook is opened, the next setting up the hierarchy is used:


CurrentValue[FontColor] // InputForm


RGBColor[1, 0, 1]

After Mathematica is restarted the $FrontEnd setting persists:


CurrentValue[FontColor] // InputForm



RGBColor[1, 0.5, 0]



As David Creech noted in a comment it is possible to use Inherited as an option value to un-set that option and revert to the next higher level of the hierarchy. Example:


SetOptions[EvaluationNotebook[], FontColor -> Blue]

Options[EvaluationNotebook[]]



{FontColor -> RGBColor[0, 0, 1], FrontEndVersion -> . . .}



SetOptions[EvaluationNotebook[], FontColor -> Inherited]

Options[EvaluationNotebook[]]


{FrontEndVersion -> "10.1 for Microsoft Windows . . .}



Note that the Option has been entirely removed from the Notebook options list.



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...