Skip to main content

evaluation - Get the current iteration count


I would like to be able to get the current iteration count, the one that if exceeds $IterationLimit makes the evaluation stop.


After not finding a magical variable that stores this value, or a magical built-in that retrieves it, I thought about TraceScan.



According to the documentation of $IterationLimit,



$IterationLimit gives an upper limit on the length of any list that can be generated by Trace

However, a quick test shows that this is not so simple. Let's define


ClearAll[f]
f[i_] := f[i - 1]
f[0] := "Yeah"

Now,



Block[{$IterationLimit = 20},
Trace[f[18]] // Length//Print;
Trace[f[18], TraceDepth -> 1] // Length//Print;
f[18]
]

prints 56 and 38 respectively, while f[18]'s evaluation finishes successfully.


Looking at the output of the last trace, we see that the before and after argument evaluation are being traced. So,


Trace[f[3], TraceDepth -> 1]   
(* {f[3],f[3-1],f[2],f[2-1],f[1],f[1-1],f[0],Yeah} *)


Notice that the "two outputs per iteration" rule doesn't hold if we add a definition like f[3]=f[1], in which case


Trace[f[5], TraceDepth -> 1]
(* {f[5],f[5-1],f[4],f[4-1],f[3],f[1],f[1-1],f[0],Yeah} *)

If this happened, a hacky workround could exist along the lines of


SetAttributes[trackIterations, HoldFirst];
trackIterations[code_] := Block[{iterationCounter = 0},
TraceScan[iterationCounter += 1/2, code, TraceDepth -> 1]
]


Question


How can I get that counter, or alternatively, how can I make Trace only trace once each iteration?




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.