Skip to main content

plotting - How can I use procedure, circle3D, to make an animation of the osculating circle of a parametric curve?


I try to use circle3D procedure, shown below, to make an animation of the osculating circle of a parametric curve.



(* circle3D PROCEDURE *)

(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)

circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1}, angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,

Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If][First @ Differences @ angle >= 2 Pi,
Circle[Most @ centre, radius],
Circle[Most @ centre, radius, angle]]

I am a new user of this site and also of Mathematica. I found this procedure on the site. It works perfectly with Graphics3D, but when I try to use it o make an animation I receive an error with the following content:




Coordinate TransformationFunction[{{0.4413884991460323, -0.5698965816793001, 0.693104666707606, -54.82771835995227}, {-0.5698965816793001, 0.4185903560645521, 0.7071067811865474, -55.93534903389071}, {-0.6931046667076058, -0.7071067811865474, -0.14002114478941538`, should be a triple of numbers, or a Scaled form.



Below is the code from my Mathematica notebook:


(* Solution: *)

ClearAll["Global`*"];

(* ZAŁOŻENIE GLOBALNE t > 0 *)
$Assumptions = t > 0;


(* KRZYWA *)
r[t_] := {t + 1/t, t - 1/t, 2 Log[t]};

(* JEDNOSTKOWY WEKTOR STYCZNY *)
tv = D[r[t], t];
tvnorm = Simplify[Sqrt[tv.tv]];
utv = tv/tvnorm;

(* POCHODNA WEKTORA STYCZNEGO *)
tvD = D[tv, t];


(* JEDNOSTKOWY WEKTOR BINORMALNY *)
bv = tv\[Cross]tvD;
bvnorm = Simplify[Sqrt[bv.bv]];
ubv = bv/bvnorm;

(* JEDNOSTKOWY WEKTOR NORMALNY *)
unv = ubv\[Cross]utv;

(* ORTOGONALNOŚĆ WEKTORÓW utv, ubv, unv *)

Simplify[(ubv\[Cross]utv)\[Cross]unv];

(* KRZYWIZNA KRZYWEJ *)
k = bvnorm/tvnorm^3;

(* PROMIEŃ OKRĘGU OSKULACYJNEGO *)
or = 1/k;

(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO *)
occv = r[t] + or*unv;


(* W PUNKCIE M: *)

(* PUNKT M - tutaj t = 1 *)
pM = {2, 0, 0};

(* JEDNOSTKOWY WEKTOR STYCZNY w M *)
utvM = utv /. t -> 1;

(* JEDNOSTKOWY WEKTOR BINORMALNY w M *)

ubvM = ubv /. t -> 1;

(* JEDNOSTKOWY WEKTOR NORMALNY w M *)
unvM = unv /. t -> 1;

(* KRZYWIZNA KRZYWEJ w M *)
kM = k /. t -> 1;

(* PROMIEŃ OKRĘGU OSKULACYJNEGO w M *)
orM = 1/kM;


(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO w M *)
occvM = r[t] + or*unv /. t -> 1;

In[23]:= (* circle3D PROCEDURE *)

(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)

circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1},

angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,
Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If

][First@Differences@angle >= 2 Pi,
Circle[Most@centre, radius],
Circle[Most@centre, radius, angle]
]

(* Visualization: *)

In[24]:= (* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;


(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];

(* PUNKT M NA KRZYWEJ *)
pMV = Graphics3D[{Blue, PointSize[Large], Point[pM]}];

(* ŚRODEK OKRĘGU OSKULACYJNEGO W M *)
occvMV = Graphics3D[{Black, PointSize[Large], Point[occvM]}];

(* OKRĄG OSKULACYJNY W M *)

ocMV = Graphics3D[circle3D[occvM, orM, ubvM ]];

(* JEDNOSTKOWY WEKTOR STYCZNY W M *)
utvMV = Graphics3D[{Green, Arrow[{pM, pM + scalvs*utvM}]}];

(* JEDNOSTKOWY WEKTOR NORMALNY W M *)
unvMV = Graphics3D[{Magenta, Arrow[{pM, pM + scalvs*unvM}]}];

(* JEDNOSTKOWY WEKTOR BINORMALNY W M *)
ubvMV = Graphics3D[{Cyan, Arrow[{pM, pM + scalvs*ubvM}]}];


(* WYKRES *)
Show[{curV, pMV, occvMV, ocMV, utvMV, ubvMV, unvMV},
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}, Axes -> True,
AxesLabel -> {x, y, z}, Ticks -> Automatic, AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny", FrameStyle -> Red], Bold, 14,
Black, Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}]


(* Animation: *)

(* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;

(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];

(* PEWIEN PUNKT P NA KRZYWEJ *)

pPV[t_] = Graphics3D[{Blue, PointSize[Large], Point[r[t]]}];

(* ŚRODEK OKRĘGU OSKULACYJNEGO W P *)
occvPV[t_] = Graphics3D[{Black, PointSize[Large], Point[occv]}];

(* OKRĄG OSKULACYJNY W P *)
ocPV[t_] = Graphics3D[circle3D[occv, or, ubv ]];

(* JEDNOSTKOWY WEKTOR STYCZNY W P *)
utvPV[t_] = Graphics3D[{Green, Arrow[{r[t], r[t] + scalvs*utv}]}];


(* JEDNOSTKOWY WEKTOR NORMALNY W P *)
unvPV[t_] = Graphics3D[{Magenta, Arrow[{r[t], r[t] + scalvs*unv}]}];

(* JEDNOSTKOWY WEKTOR BINORMALNY W P *)
ubvPV[t_] = Graphics3D[{Cyan, Arrow[{r[t], r[t] + scalvs*ubv}]}];

(* ANIMATION *)

Animate[

Show[{curV, pPV[t], occvPV[t], ocPV[t], utvPV[t], ubvPV[t], nvPV[t]},
BaseStyle -> {FontSize -> 12,
FontFamily -> "Verdena"},
Axes -> True,
AxesLabel -> {x, y, z},
Ticks -> Automatic,
AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny",

FrameStyle -> Red], Bold, 14, Black,
Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}], {t, 0.1, 4},
AnimationRunning -> False]

Please help me solve the problem I have described.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...