plotting - How can I use procedure, circle3D, to make an animation of the osculating circle of a parametric curve?
I try to use circle3D
procedure, shown below, to make an animation of the osculating circle of a parametric curve.
(* circle3D PROCEDURE *)
(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)
circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1}, angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,
Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If][First @ Differences @ angle >= 2 Pi,
Circle[Most @ centre, radius],
Circle[Most @ centre, radius, angle]]
I am a new user of this site and also of Mathematica. I found this procedure on the site. It works perfectly with Graphics3D
, but when I try to use it o make an animation I receive an error with the following content:
Coordinate TransformationFunction[{{0.4413884991460323, -0.5698965816793001, 0.693104666707606, -54.82771835995227}, {-0.5698965816793001, 0.4185903560645521, 0.7071067811865474, -55.93534903389071}, {-0.6931046667076058, -0.7071067811865474, -0.14002114478941538`, should be a triple of numbers, or a Scaled form.
Below is the code from my Mathematica notebook:
(* Solution: *)
ClearAll["Global`*"];
(* ZAŁOŻENIE GLOBALNE t > 0 *)
$Assumptions = t > 0;
(* KRZYWA *)
r[t_] := {t + 1/t, t - 1/t, 2 Log[t]};
(* JEDNOSTKOWY WEKTOR STYCZNY *)
tv = D[r[t], t];
tvnorm = Simplify[Sqrt[tv.tv]];
utv = tv/tvnorm;
(* POCHODNA WEKTORA STYCZNEGO *)
tvD = D[tv, t];
(* JEDNOSTKOWY WEKTOR BINORMALNY *)
bv = tv\[Cross]tvD;
bvnorm = Simplify[Sqrt[bv.bv]];
ubv = bv/bvnorm;
(* JEDNOSTKOWY WEKTOR NORMALNY *)
unv = ubv\[Cross]utv;
(* ORTOGONALNOŚĆ WEKTORÓW utv, ubv, unv *)
Simplify[(ubv\[Cross]utv)\[Cross]unv];
(* KRZYWIZNA KRZYWEJ *)
k = bvnorm/tvnorm^3;
(* PROMIEŃ OKRĘGU OSKULACYJNEGO *)
or = 1/k;
(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO *)
occv = r[t] + or*unv;
(* W PUNKCIE M: *)
(* PUNKT M - tutaj t = 1 *)
pM = {2, 0, 0};
(* JEDNOSTKOWY WEKTOR STYCZNY w M *)
utvM = utv /. t -> 1;
(* JEDNOSTKOWY WEKTOR BINORMALNY w M *)
ubvM = ubv /. t -> 1;
(* JEDNOSTKOWY WEKTOR NORMALNY w M *)
unvM = unv /. t -> 1;
(* KRZYWIZNA KRZYWEJ w M *)
kM = k /. t -> 1;
(* PROMIEŃ OKRĘGU OSKULACYJNEGO w M *)
orM = 1/kM;
(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO w M *)
occvM = r[t] + or*unv /. t -> 1;
In[23]:= (* circle3D PROCEDURE *)
(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)
circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1},
angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,
Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If
][First@Differences@angle >= 2 Pi,
Circle[Most@centre, radius],
Circle[Most@centre, radius, angle]
]
(* Visualization: *)
In[24]:= (* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;
(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];
(* PUNKT M NA KRZYWEJ *)
pMV = Graphics3D[{Blue, PointSize[Large], Point[pM]}];
(* ŚRODEK OKRĘGU OSKULACYJNEGO W M *)
occvMV = Graphics3D[{Black, PointSize[Large], Point[occvM]}];
(* OKRĄG OSKULACYJNY W M *)
ocMV = Graphics3D[circle3D[occvM, orM, ubvM ]];
(* JEDNOSTKOWY WEKTOR STYCZNY W M *)
utvMV = Graphics3D[{Green, Arrow[{pM, pM + scalvs*utvM}]}];
(* JEDNOSTKOWY WEKTOR NORMALNY W M *)
unvMV = Graphics3D[{Magenta, Arrow[{pM, pM + scalvs*unvM}]}];
(* JEDNOSTKOWY WEKTOR BINORMALNY W M *)
ubvMV = Graphics3D[{Cyan, Arrow[{pM, pM + scalvs*ubvM}]}];
(* WYKRES *)
Show[{curV, pMV, occvMV, ocMV, utvMV, ubvMV, unvMV},
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}, Axes -> True,
AxesLabel -> {x, y, z}, Ticks -> Automatic, AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny", FrameStyle -> Red], Bold, 14,
Black, Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}]
(* Animation: *)
(* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;
(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];
(* PEWIEN PUNKT P NA KRZYWEJ *)
pPV[t_] = Graphics3D[{Blue, PointSize[Large], Point[r[t]]}];
(* ŚRODEK OKRĘGU OSKULACYJNEGO W P *)
occvPV[t_] = Graphics3D[{Black, PointSize[Large], Point[occv]}];
(* OKRĄG OSKULACYJNY W P *)
ocPV[t_] = Graphics3D[circle3D[occv, or, ubv ]];
(* JEDNOSTKOWY WEKTOR STYCZNY W P *)
utvPV[t_] = Graphics3D[{Green, Arrow[{r[t], r[t] + scalvs*utv}]}];
(* JEDNOSTKOWY WEKTOR NORMALNY W P *)
unvPV[t_] = Graphics3D[{Magenta, Arrow[{r[t], r[t] + scalvs*unv}]}];
(* JEDNOSTKOWY WEKTOR BINORMALNY W P *)
ubvPV[t_] = Graphics3D[{Cyan, Arrow[{r[t], r[t] + scalvs*ubv}]}];
(* ANIMATION *)
Animate[
Show[{curV, pPV[t], occvPV[t], ocPV[t], utvPV[t], ubvPV[t], nvPV[t]},
BaseStyle -> {FontSize -> 12,
FontFamily -> "Verdena"},
Axes -> True,
AxesLabel -> {x, y, z},
Ticks -> Automatic,
AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny",
FrameStyle -> Red], Bold, 14, Black,
Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}], {t, 0.1, 4},
AnimationRunning -> False]
Please help me solve the problem I have described.
Comments
Post a Comment