Skip to main content

plotting - How can I use procedure, circle3D, to make an animation of the osculating circle of a parametric curve?


I try to use circle3D procedure, shown below, to make an animation of the osculating circle of a parametric curve.



(* circle3D PROCEDURE *)

(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)

circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1}, angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,

Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If][First @ Differences @ angle >= 2 Pi,
Circle[Most @ centre, radius],
Circle[Most @ centre, radius, angle]]

I am a new user of this site and also of Mathematica. I found this procedure on the site. It works perfectly with Graphics3D, but when I try to use it o make an animation I receive an error with the following content:




Coordinate TransformationFunction[{{0.4413884991460323, -0.5698965816793001, 0.693104666707606, -54.82771835995227}, {-0.5698965816793001, 0.4185903560645521, 0.7071067811865474, -55.93534903389071}, {-0.6931046667076058, -0.7071067811865474, -0.14002114478941538`, should be a triple of numbers, or a Scaled form.



Below is the code from my Mathematica notebook:


(* Solution: *)

ClearAll["Global`*"];

(* ZAŁOŻENIE GLOBALNE t > 0 *)
$Assumptions = t > 0;


(* KRZYWA *)
r[t_] := {t + 1/t, t - 1/t, 2 Log[t]};

(* JEDNOSTKOWY WEKTOR STYCZNY *)
tv = D[r[t], t];
tvnorm = Simplify[Sqrt[tv.tv]];
utv = tv/tvnorm;

(* POCHODNA WEKTORA STYCZNEGO *)
tvD = D[tv, t];


(* JEDNOSTKOWY WEKTOR BINORMALNY *)
bv = tv\[Cross]tvD;
bvnorm = Simplify[Sqrt[bv.bv]];
ubv = bv/bvnorm;

(* JEDNOSTKOWY WEKTOR NORMALNY *)
unv = ubv\[Cross]utv;

(* ORTOGONALNOŚĆ WEKTORÓW utv, ubv, unv *)

Simplify[(ubv\[Cross]utv)\[Cross]unv];

(* KRZYWIZNA KRZYWEJ *)
k = bvnorm/tvnorm^3;

(* PROMIEŃ OKRĘGU OSKULACYJNEGO *)
or = 1/k;

(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO *)
occv = r[t] + or*unv;


(* W PUNKCIE M: *)

(* PUNKT M - tutaj t = 1 *)
pM = {2, 0, 0};

(* JEDNOSTKOWY WEKTOR STYCZNY w M *)
utvM = utv /. t -> 1;

(* JEDNOSTKOWY WEKTOR BINORMALNY w M *)

ubvM = ubv /. t -> 1;

(* JEDNOSTKOWY WEKTOR NORMALNY w M *)
unvM = unv /. t -> 1;

(* KRZYWIZNA KRZYWEJ w M *)
kM = k /. t -> 1;

(* PROMIEŃ OKRĘGU OSKULACYJNEGO w M *)
orM = 1/kM;


(* WEKTOR WODZĄCY ŚRODKA OKRĘGU OSKULACYJNEGO w M *)
occvM = r[t] + or*unv /. t -> 1;

In[23]:= (* circle3D PROCEDURE *)

(* Let's create circle3D that is something we would expect from
Circle but with an extra argument for its normal vector *)

circle3D[centre_: {0, 0, 0}, radius_: 1, normal_: {0, 0, 1},

angle_: {0, 2 Pi}] :=
Composition[
Line,
Map[RotationTransform[{{0, 0, 1}, normal}, centre], #] &,
Map[Append[#, Last@centre] &, #] &,
Append[DeleteDuplicates[Most@#], Last@#] &,
Level[#, {-2}] &,
MeshPrimitives[#, 1] &,
DiscretizeRegion,
If

][First@Differences@angle >= 2 Pi,
Circle[Most@centre, radius],
Circle[Most@centre, radius, angle]
]

(* Visualization: *)

In[24]:= (* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;


(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];

(* PUNKT M NA KRZYWEJ *)
pMV = Graphics3D[{Blue, PointSize[Large], Point[pM]}];

(* ŚRODEK OKRĘGU OSKULACYJNEGO W M *)
occvMV = Graphics3D[{Black, PointSize[Large], Point[occvM]}];

(* OKRĄG OSKULACYJNY W M *)

ocMV = Graphics3D[circle3D[occvM, orM, ubvM ]];

(* JEDNOSTKOWY WEKTOR STYCZNY W M *)
utvMV = Graphics3D[{Green, Arrow[{pM, pM + scalvs*utvM}]}];

(* JEDNOSTKOWY WEKTOR NORMALNY W M *)
unvMV = Graphics3D[{Magenta, Arrow[{pM, pM + scalvs*unvM}]}];

(* JEDNOSTKOWY WEKTOR BINORMALNY W M *)
ubvMV = Graphics3D[{Cyan, Arrow[{pM, pM + scalvs*ubvM}]}];


(* WYKRES *)
Show[{curV, pMV, occvMV, ocMV, utvMV, ubvMV, unvMV},
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}, Axes -> True,
AxesLabel -> {x, y, z}, Ticks -> Automatic, AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny", FrameStyle -> Red], Bold, 14,
Black, Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}]


(* Animation: *)

(* SKALOWANIE WEKTORÓW JEDNOSTKOWYCH *)
scalvs = 3;

(* KRZYWA *)
curV = ParametricPlot3D[r[t], {t, 0.1, 4}, PlotStyle -> Red];

(* PEWIEN PUNKT P NA KRZYWEJ *)

pPV[t_] = Graphics3D[{Blue, PointSize[Large], Point[r[t]]}];

(* ŚRODEK OKRĘGU OSKULACYJNEGO W P *)
occvPV[t_] = Graphics3D[{Black, PointSize[Large], Point[occv]}];

(* OKRĄG OSKULACYJNY W P *)
ocPV[t_] = Graphics3D[circle3D[occv, or, ubv ]];

(* JEDNOSTKOWY WEKTOR STYCZNY W P *)
utvPV[t_] = Graphics3D[{Green, Arrow[{r[t], r[t] + scalvs*utv}]}];


(* JEDNOSTKOWY WEKTOR NORMALNY W P *)
unvPV[t_] = Graphics3D[{Magenta, Arrow[{r[t], r[t] + scalvs*unv}]}];

(* JEDNOSTKOWY WEKTOR BINORMALNY W P *)
ubvPV[t_] = Graphics3D[{Cyan, Arrow[{r[t], r[t] + scalvs*ubv}]}];

(* ANIMATION *)

Animate[

Show[{curV, pPV[t], occvPV[t], ocPV[t], utvPV[t], ubvPV[t], nvPV[t]},
BaseStyle -> {FontSize -> 12,
FontFamily -> "Verdena"},
Axes -> True,
AxesLabel -> {x, y, z},
Ticks -> Automatic,
AxesStyle -> {Red, Green, Blue},
PlotRange -> {{1, 12}, {-5, 4}, {-5, 3}},
PlotLabel ->
Style[Framed["Krzywa i okrąg oskulacyjny",

FrameStyle -> Red], Bold, 14, Black,
Background -> Lighter[LightYellow]],
BaseStyle -> {FontSize -> 12, FontFamily -> "Verdena"}], {t, 0.1, 4},
AnimationRunning -> False]

Please help me solve the problem I have described.




Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....