Skip to main content

performance tuning - Is there any way to speed up this code that's Maximizing a function got from numerical integration?


I have this code below, which is calculating the Binding energy of an electron in a Quantum Well Wire with a hydrogenic impurity in it. Well you don't have to care much about what kind of calculation it does, because it is returning the right number, my only problem is, that it's taking about 20 minutes for it to return a single value for the Eb function (you can try Eb[0.7, 1, 0.01]). I'm wondering, if there's a way to make this code run faster. As you can see I have written everything almost the same way as one would write on paper. I've searched and tried many different approaches to make it faster, but nothing has helped so far.


e = 4.803*10^-10;
m = 0.067*9.109*10^-28;
h = 1.054*10^-27;
c = 2.997*10^10;
e0 = 13.18;


O1[Om_] = 10^13*Om;

oH[h0_] = (e*10000*h0)/(m*c);

Oc[h0_, Om_] = Sqrt[oH[h0]^2 + 4*O1[Om]^2];

aH[h0_, Om_] = Sqrt[h/(m*Oc[h0, Om])];

r0[rho_, phi_, z_, rhoi_] =
Sqrt[rho^2 + rhoi^2 - 2*rho*rhoi*Cos[phi] + z^2];


Psi[rho_, h0_, Om_] = E^(-(1/2)*(rho^2*aH[1, Om]^2)/aH[h0, Om]^2);

MGamma[rho_, phi_, z_, rhoi_, lambda_, Om_] =
E^(-lambda*r0[rho, phi, z, rhoi]);

CPhi[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
Psi[rho, h0, Om]*MGamma[rho, phi, z, rhoi, lambda, Om];

intCPhiCPhi[rhoi_, lambda_, h0_, Om_] :=

NIntegrate[
Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2*rho, {rho, 0,
Infinity}, {phi, 0, 2*\[Pi]}, {z, -Infinity, +Infinity}];

leftover[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
CPhi[rho, phi, z, rhoi, lambda, h0, Om]*
h^2/(2*m*(aH[1, Om])^2)*(Psi[rho, h0, Om]/rho*
D[MGamma[rho, phi, z, rhoi, lambda, Om], rho] +
2*D[MGamma[rho, phi, z, rhoi, lambda, Om], rho]*
D[Psi[rho, h0, Om], rho] +

Psi[rho, h0, Om]*
D[MGamma[rho, phi, z, rhoi, lambda, Om], {rho, 2}] +
Psi[rho, h0, Om]/rho^2*
D[MGamma[rho, phi, z, rhoi, lambda, Om], +{phi, 2}] +
Psi[rho, h0, Om]*
D[MGamma[rho, phi, z, rhoi, lambda, Om], {z, 2}]) + (e^2*
Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2)/(e0*
r0[rho, phi, z, rhoi]*aH[1, Om]);

IntLeftover[rhoi_?NumericQ, lambda_?NumericQ, h0_?NumericQ,

Om_?NumericQ] := (2*e0^2*h^2)/(e^4*
m)*((1/intCPhiCPhi[rhoi, lambda, h0, Om] )*
NIntegrate[
leftover[rho, phi, z, rhoi, lambda, h0, Om]*rho, {rho, 0,
Infinity}, {phi, 0, 2*\[Pi]}, {z, -Infinity, +Infinity}])

Eb[rhoi_, h0_, Om_] :=
FindMaximum[IntLeftover[rhoi, lambda, h0, Om], lambda];

Answer



One way to speed up multidimensional integrals is to reduce the PrecisionGoal. That will be acceptable in some cases but not in others.



Modified OP's code:


Clear[e, m, h, c, e0]  (* I moved the parameter initialization to later (unimportant *)

O1[Om_] = 10^13*Om;
oH[h0_] = (e*10000*h0)/(m*c);
Oc[h0_, Om_] = Sqrt[oH[h0]^2 + 4*O1[Om]^2];
aH[h0_, Om_] = Sqrt[h/(m*Oc[h0, Om])];
r0[rho_, phi_, z_, rhoi_] = Sqrt[rho^2 + rhoi^2 - 2*rho*rhoi*Cos[phi] + z^2];
Psi[rho_, h0_, Om_] = E^(-(1/2)*(rho^2*aH[1, Om]^2)/aH[h0, Om]^2);
MGamma[rho_, phi_, z_, rhoi_, lambda_, Om_] = E^(-lambda*r0[rho, phi, z, rhoi]);

CPhi[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
Psi[rho, h0, Om]*MGamma[rho, phi, z, rhoi, lambda, Om];

intCPhiCPhi[rhoi_, lambda_, h0_, Om_] :=
NIntegrate[Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2*rho, (* NB: Abs[..]^2=(..)^2 *)
{phi, 0, 2*Ï€}, {rho, 0, Infinity}, {z, -Infinity, +Infinity},
PrecisionGoal -> 3];

leftover[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
CPhi[rho, phi, z, rhoi, lambda, h0, Om]*

h^2/(2*m*(aH[1, Om])^2)*(Psi[rho, h0, Om]/rho*
D[MGamma[rho, phi, z, rhoi, lambda, Om], rho] +
2*D[MGamma[rho, phi, z, rhoi, lambda, Om], rho]*D[Psi[rho, h0, Om], rho] +
Psi[rho, h0, Om]*D[MGamma[rho, phi, z, rhoi, lambda, Om], {rho, 2}] +
Psi[rho, h0, Om]/rho^2*D[MGamma[rho, phi, z, rhoi, lambda, Om], +{phi, 2}] +
Psi[rho, h0, Om]*D[MGamma[rho, phi, z, rhoi, lambda, Om], {z, 2}]) +
(e^2*Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2) /
(e0*r0[rho, phi, z, rhoi]*aH[1, Om]);

IntLeftover[rhoi_?NumericQ, lambda_?NumericQ, h0_?NumericQ,

Om_?NumericQ] := (2*e0^2*h^2)/(e^4*
m)*((1/intCPhiCPhi[rhoi, lambda, h0, Om])*
NIntegrate[leftover[rho, phi, z, rhoi, lambda, h0, Om]*rho,
{phi, 0, 2*Ï€}, {rho, 0, Infinity}, {z, -Infinity, +Infinity},
PrecisionGoal -> 3]);

Eb[rhoi_, h0_, Om_] := FindMaximum[IntLeftover[rhoi, lambda, h0, Om], lambda];

OP's example:


PrintTemporary@Dynamic@Clock@{0, Infinity};  (* running timer (helps preserve my sanity *)

Block[{ (* parameter initialization *)
e = 4.803*10^-10,
m = 0.067*9.109*10^-28,
h = 1.054*10^-27,
c = 2.997*10^10,
e0 = 13.18},
Eb[0.7, 1, 0.01] // AbsoluteTiming
]



FindMaximum::lstol: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient increase in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances.



(*  {11.0647, {1.16175, {lambda -> 2.28525}}}  *)

Playing with it, I sometimes did not get a FindMaximum::lstol warning, but I always got 2.28525 or 2.28526 for an answer. I suspect that the noise from the numerical integration is the source.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...