Skip to main content

performance tuning - Is there any way to speed up this code that's Maximizing a function got from numerical integration?


I have this code below, which is calculating the Binding energy of an electron in a Quantum Well Wire with a hydrogenic impurity in it. Well you don't have to care much about what kind of calculation it does, because it is returning the right number, my only problem is, that it's taking about 20 minutes for it to return a single value for the Eb function (you can try Eb[0.7, 1, 0.01]). I'm wondering, if there's a way to make this code run faster. As you can see I have written everything almost the same way as one would write on paper. I've searched and tried many different approaches to make it faster, but nothing has helped so far.


e = 4.803*10^-10;
m = 0.067*9.109*10^-28;
h = 1.054*10^-27;
c = 2.997*10^10;
e0 = 13.18;


O1[Om_] = 10^13*Om;

oH[h0_] = (e*10000*h0)/(m*c);

Oc[h0_, Om_] = Sqrt[oH[h0]^2 + 4*O1[Om]^2];

aH[h0_, Om_] = Sqrt[h/(m*Oc[h0, Om])];

r0[rho_, phi_, z_, rhoi_] =
Sqrt[rho^2 + rhoi^2 - 2*rho*rhoi*Cos[phi] + z^2];


Psi[rho_, h0_, Om_] = E^(-(1/2)*(rho^2*aH[1, Om]^2)/aH[h0, Om]^2);

MGamma[rho_, phi_, z_, rhoi_, lambda_, Om_] =
E^(-lambda*r0[rho, phi, z, rhoi]);

CPhi[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
Psi[rho, h0, Om]*MGamma[rho, phi, z, rhoi, lambda, Om];

intCPhiCPhi[rhoi_, lambda_, h0_, Om_] :=

NIntegrate[
Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2*rho, {rho, 0,
Infinity}, {phi, 0, 2*\[Pi]}, {z, -Infinity, +Infinity}];

leftover[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
CPhi[rho, phi, z, rhoi, lambda, h0, Om]*
h^2/(2*m*(aH[1, Om])^2)*(Psi[rho, h0, Om]/rho*
D[MGamma[rho, phi, z, rhoi, lambda, Om], rho] +
2*D[MGamma[rho, phi, z, rhoi, lambda, Om], rho]*
D[Psi[rho, h0, Om], rho] +

Psi[rho, h0, Om]*
D[MGamma[rho, phi, z, rhoi, lambda, Om], {rho, 2}] +
Psi[rho, h0, Om]/rho^2*
D[MGamma[rho, phi, z, rhoi, lambda, Om], +{phi, 2}] +
Psi[rho, h0, Om]*
D[MGamma[rho, phi, z, rhoi, lambda, Om], {z, 2}]) + (e^2*
Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2)/(e0*
r0[rho, phi, z, rhoi]*aH[1, Om]);

IntLeftover[rhoi_?NumericQ, lambda_?NumericQ, h0_?NumericQ,

Om_?NumericQ] := (2*e0^2*h^2)/(e^4*
m)*((1/intCPhiCPhi[rhoi, lambda, h0, Om] )*
NIntegrate[
leftover[rho, phi, z, rhoi, lambda, h0, Om]*rho, {rho, 0,
Infinity}, {phi, 0, 2*\[Pi]}, {z, -Infinity, +Infinity}])

Eb[rhoi_, h0_, Om_] :=
FindMaximum[IntLeftover[rhoi, lambda, h0, Om], lambda];

Answer



One way to speed up multidimensional integrals is to reduce the PrecisionGoal. That will be acceptable in some cases but not in others.



Modified OP's code:


Clear[e, m, h, c, e0]  (* I moved the parameter initialization to later (unimportant *)

O1[Om_] = 10^13*Om;
oH[h0_] = (e*10000*h0)/(m*c);
Oc[h0_, Om_] = Sqrt[oH[h0]^2 + 4*O1[Om]^2];
aH[h0_, Om_] = Sqrt[h/(m*Oc[h0, Om])];
r0[rho_, phi_, z_, rhoi_] = Sqrt[rho^2 + rhoi^2 - 2*rho*rhoi*Cos[phi] + z^2];
Psi[rho_, h0_, Om_] = E^(-(1/2)*(rho^2*aH[1, Om]^2)/aH[h0, Om]^2);
MGamma[rho_, phi_, z_, rhoi_, lambda_, Om_] = E^(-lambda*r0[rho, phi, z, rhoi]);

CPhi[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
Psi[rho, h0, Om]*MGamma[rho, phi, z, rhoi, lambda, Om];

intCPhiCPhi[rhoi_, lambda_, h0_, Om_] :=
NIntegrate[Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2*rho, (* NB: Abs[..]^2=(..)^2 *)
{phi, 0, 2*π}, {rho, 0, Infinity}, {z, -Infinity, +Infinity},
PrecisionGoal -> 3];

leftover[rho_, phi_, z_, rhoi_, lambda_, h0_, Om_] =
CPhi[rho, phi, z, rhoi, lambda, h0, Om]*

h^2/(2*m*(aH[1, Om])^2)*(Psi[rho, h0, Om]/rho*
D[MGamma[rho, phi, z, rhoi, lambda, Om], rho] +
2*D[MGamma[rho, phi, z, rhoi, lambda, Om], rho]*D[Psi[rho, h0, Om], rho] +
Psi[rho, h0, Om]*D[MGamma[rho, phi, z, rhoi, lambda, Om], {rho, 2}] +
Psi[rho, h0, Om]/rho^2*D[MGamma[rho, phi, z, rhoi, lambda, Om], +{phi, 2}] +
Psi[rho, h0, Om]*D[MGamma[rho, phi, z, rhoi, lambda, Om], {z, 2}]) +
(e^2*Abs[CPhi[rho, phi, z, rhoi, lambda, h0, Om]]^2) /
(e0*r0[rho, phi, z, rhoi]*aH[1, Om]);

IntLeftover[rhoi_?NumericQ, lambda_?NumericQ, h0_?NumericQ,

Om_?NumericQ] := (2*e0^2*h^2)/(e^4*
m)*((1/intCPhiCPhi[rhoi, lambda, h0, Om])*
NIntegrate[leftover[rho, phi, z, rhoi, lambda, h0, Om]*rho,
{phi, 0, 2*π}, {rho, 0, Infinity}, {z, -Infinity, +Infinity},
PrecisionGoal -> 3]);

Eb[rhoi_, h0_, Om_] := FindMaximum[IntLeftover[rhoi, lambda, h0, Om], lambda];

OP's example:


PrintTemporary@Dynamic@Clock@{0, Infinity};  (* running timer (helps preserve my sanity *)

Block[{ (* parameter initialization *)
e = 4.803*10^-10,
m = 0.067*9.109*10^-28,
h = 1.054*10^-27,
c = 2.997*10^10,
e0 = 13.18},
Eb[0.7, 1, 0.01] // AbsoluteTiming
]



FindMaximum::lstol: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient increase in the function. You may need more than MachinePrecision digits of working precision to meet these tolerances.



(*  {11.0647, {1.16175, {lambda -> 2.28525}}}  *)

Playing with it, I sometimes did not get a FindMaximum::lstol warning, but I always got 2.28525 or 2.28526 for an answer. I suspect that the noise from the numerical integration is the source.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]