Skip to main content

Apply ColorFunction to an Image




is there a faster way to change the colors of an image from grayscale to something like this:


Manipulate[coltest2 = (Blend[{{a, Black}, {b, Lighter[Blue, 0.3]}, {c,Lighter[Cyan,0.3]}, {d, White}}, #] &);
Plot[0.2, {x, 0, 1}, ColorFunction -> coltest2, PlotStyle -> Directive[Thickness[1]], PlotRange -> {{0, 1}, {0, 0.5}}, Frame -> True, FrameTicks -> {True, False, None, None}, AspectRatio -> 1/8],
{{a, 0.35}, 0, b, Appearance -> "Labeled"},
{{b, 0.58}, 0, c, Appearance -> "Labeled"},
{{c, 0.7}, 0, d, Appearance -> "Labeled"},
{{d, 0.95}, 0, 1, Appearance -> "Labeled"}]

than using:



Colorize[image,ColorFunction->coltest2]

I would like to have the image in the manipulate rather than the sample of the ColorFunction, but Colorize is way to slow for that...



Answer



What you can do is, you mimic the behaviour of Blend by creating a function that interpolates linearly between colours. What you change with your parameters are the values where the color transitions take place.


Let me give you a simplified example: I use 3 colours. In the compiled function, I only work with their {r,g,b} values. As result, I want a compiled function which does the following:



  • it takes a parameter a between 0 and 1 and a pixel value between 0 and 1

  • with 3 colours c1, c2 and c3 it will colorise the pixel: from a pixel value of 0 to a it will be colorised with the transition c1 to c2. If the pixel value is greater than a it will be colorised by blending c2 and c3.

  • the compiled function should be able to work in parallel on all pixels of an image



Here is a sample implementation of a function that creates such a colorising compiled function for us:


createColorFunc[colors : {_, _, _}] :=
Function[{c1, c2, c3},
Compile[{{a, _Real, 0}, {value, _Real, 0}},
If[value < a,
c1 + ((-c1 + c2)*value)/a,
(c3*(a - value) + c2*(-1 + value))/(-1 + a)
], Parallelization -> True, RuntimeAttributes -> {Listable}
]

] @@ List @@@ (ColorConvert[#, "RGB"] & /@ colors)

To test is, we load the Lena image in grayscale an build a small Manipulate:


With[{lena = ColorConvert[ExampleData[{"TestImage", "Lena"}], "Grayscale"]},
Manipulate[
func = createColorFunc[{c1, c2, c3}];
Image[func[a, ImageData[lena, "Real"]]],
{{a, .5}, 0, 1},
{c1, Black},
{c2, Gray},

{c3, White}
]
]

Mathematica graphics


You task is now to extend this for more than 3 colours and one color transition position.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]