Skip to main content

packages - Strange behaviour of order of execution or bug?


enter image description here


In[1] and In[3] are identical but the output is different.



Answer



? name is a special input form with nonstandard parsing behavior, just like >>> as explained here.


When you write a line starting with ? the item following it is not a Symbol, contrary to appearances. Instead it is a String with implicit delimiters. This is not simply a matter of a hold attribute. For example HoldComplete[a^] is incomplete syntax and cannot be entered, yet:


?a^



Information::nomatch: No symbol matching a^ found. >>



Using the same method as for the linked question we can take a look at parsing itself:


parseString[s_String, prep : (True | False) : True] := 
FrontEndExecute[FrontEnd`UndocumentedTestFEParserPacket[s, prep]]

parseString["?a^"]

parseString["HoldComplete[a^]"]



{BoxData[RowBox[{"?", "a^"}]], StandardForm}

{BoxData[RowBox[{"HoldComplete", "[", RowBox[{"a", "^"}], "]"}]], StandardForm}

Observe that in the first case "a^" remains an undivided String whereas in the section it is parsed into a RowBox.


We can look at the next step in evaluation by using MakeBoxes:


MakeExpression @ "?name"



HoldComplete[Information["name", LongForm -> False]]

Note that the first argument of Information is the String "name" and not the Symbol name.


So know you know that your ? name input form actually becomes:


 Information["VariationalMethods`VariationalD", LongForm -> False]

And indeed this behaves just the same. But why does this say "No symbol matching" in a fresh kernel while this does not?:


Information[VariationalMethods`VariationalD, LongForm -> False]

Consider the way that DeclarePackage works:




You can use DeclarePackage to tell Mathematica automatically to load a particular package when any of the symbols defined in it are used.


DeclarePackage["ErrorBarPlots`", "ErrorListPlot"]

The String "ErrorListPlot" does not count as the use of the Symbol ErrorListPlot as explained in the documentation for Stub:





  • Symbols with the Stub attribute are created by DeclarePackage.





  • A symbol is considered "used" if its name appears explicitly, not in the form of a string.




  • Names["nameform"] and Attributes["nameform"] do not constitute "uses" of a symbol.





Therefore the implicit string form of ?name does not constitute a use of name and the package is not loaded, resulting in the nomatch message.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...