Skip to main content

Why is there a huge performance gap using Map with more than 100 List entries



im using Map on a List like this:


cube= {{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, ... , {5, 5, 4}, {5, 5, 5}}

Mapping the whole List with 125 entries takes like 2.5s.


AbsoluteTiming[
Map[Apply[d[[#1, #2, #3]] &, #] &, cube];
]

{2.552146, Null}


Mapping in two sublists with less than 100 entries the whole thing takes nearly no time.


 AbsoluteTiming[
Join[
Map[Apply[d[[#1, #2, #3]] &, #] &, cube[[1 ;; 99]]],
Map[Apply[d[[#1, #2, #3]] &, #] &, cube[[100 ;; 125]]]
];

]

{0., Null}


Why is there a huge performance gap? An how do I avoid it except splitting my list?



Answer



If you look at SystemOptions[], like so,


Column[
OpenerView /@
(Replace[SystemOptions[], Rule[x_, y_] -> List[x, y],
1])
]


you see that under CompileOptions, if you click on the triangle to open it,


enter image description here


there is an option "MapCompileLength" -> 100. Set it to eg 10 and see it it helps (do SetSystemOptions["CompileOptions" -> {"MapCompileLength" -> 10}]).


This option determines the length of the list above which Mathematica (tries to) compile the function to be mapped.


EDIT: Example:


Here's some data:


Length[cube = Tuples[Range[10], 4]]

And here's a function which is a) inefficient on purpose, b) designed to be compilable as-is (that's why I localise s, so that Compile will work).


d = (Module[{s = 0}, Do[s = s + #[[i]]^2, {i, Length@#}];s] &)


Now, set the auto-compilation length for Map to 100 (the default):


SetSystemOptions["CompileOptions" -> {"MapCompileLength" -> 100}]

and now test:


Needs["GeneralUtilities`"]
Quiet@BenchmarkPlot[d /@ # &, cube[[1 ;; #]] &, Range[90, 110]]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]