Skip to main content

options - Increasing notebook magnification pushes output onto a new line


When I increase the notebook magnification beyond a certain level, it pushes the output of a command onto a newline.


Image of the Issue


It does this normally when you enter something like foo // FullForm, because Out[n]= gets replaced by Out[n]//FullForm=, which is so much wider that it has to start a newline for the output. But it's a shame that once n enters double-digits that at a certain magnification, the usual Out[n]= is just barely too wide, and this behavior occurs. Setting the magnification with


SetOptions[EvaluationNotebook[], Magnification -> 1.65]

is enough to get this behavior, but a magnification of 1.6 is still fine. Is there an easy way to avoid this behavior? Can we slightly increase the size of the margin where In[n]:= and Out[n]= live to avoid this issue?



I'm running Mathematica 11.0 in Linux x86 (64-bit), and apparently this is an issue on OS X too, but not on Windows.



Answer



You can increase the CellMargins for the styles "Input" and "Output" in your style sheet to accommodate the increased size of the cell labels. For example, the following setting:


CellMargins -> {{80, 10}, {10, 5}}

fixes the issue for me with a Magnification of 2.




If you don't want to mess around with editing the style sheet, you could evaluate the following instead:


SetOptions[
EvaluationNotebook[],

StyleDefinitions -> Notebook[{
Cell[StyleData[StyleDefinitions->"Default.nb"]],
Cell[StyleData["Input"],CellMargins->{{80,10},{10,5}}],
Cell[StyleData["Output"],CellMargins->{{80,10},{10,5}}]
}]
]

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],