Skip to main content

options - Increasing notebook magnification pushes output onto a new line


When I increase the notebook magnification beyond a certain level, it pushes the output of a command onto a newline.


Image of the Issue


It does this normally when you enter something like foo // FullForm, because Out[n]= gets replaced by Out[n]//FullForm=, which is so much wider that it has to start a newline for the output. But it's a shame that once n enters double-digits that at a certain magnification, the usual Out[n]= is just barely too wide, and this behavior occurs. Setting the magnification with


SetOptions[EvaluationNotebook[], Magnification -> 1.65]

is enough to get this behavior, but a magnification of 1.6 is still fine. Is there an easy way to avoid this behavior? Can we slightly increase the size of the margin where In[n]:= and Out[n]= live to avoid this issue?



I'm running Mathematica 11.0 in Linux x86 (64-bit), and apparently this is an issue on OS X too, but not on Windows.



Answer



You can increase the CellMargins for the styles "Input" and "Output" in your style sheet to accommodate the increased size of the cell labels. For example, the following setting:


CellMargins -> {{80, 10}, {10, 5}}

fixes the issue for me with a Magnification of 2.




If you don't want to mess around with editing the style sheet, you could evaluate the following instead:


SetOptions[
EvaluationNotebook[],

StyleDefinitions -> Notebook[{
Cell[StyleData[StyleDefinitions->"Default.nb"]],
Cell[StyleData["Input"],CellMargins->{{80,10},{10,5}}],
Cell[StyleData["Output"],CellMargins->{{80,10},{10,5}}]
}]
]

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...