Skip to main content

output formatting - Why does Mathematica order polynomial forms in reverse from traditional order?


I could very well be missing something obvious, but this has always bugged me with Mathematica and I don't know why it does it or how to fix it.


If I enter any polynomial, say, x^2 + x - 1 for example, the output is always in the form:


-1 + x + x^2

And again:


input: Expand[(x^2 - 1) ((-3 + x)^2 - 4)]
output: -5 + 6 x + 4 x^2 - 6 x^3 + x^4

I find this much more difficult to read than the traditional way, from highest power to lowest. Is there anything I can do to change this? I'm aware that TraditionalForm prints them properly, but it is generally not recommended to do calculations with TraditionalForm so I'd like to avoid that if possible. Then again, IS IT that bad to do calculations with TraditionalForm like it warns?




Answer



As Daniel Lichtblau wrote in the comment you can use TraditionalForm


Expand[(x^2 - 1) ((-3 + x)^2 - 4)] // TraditionalForm


$x^4-6 x^3+4 x^2+6 x-5$



However, it works perfectly only with univariate polynomials


Expand[(x + y + 1)^5] // TraditionalForm



$x^5+5 x^4 y+5 x^4+10 x^3 y^2+20 x^3 y+10 x^3+10 x^2 y^3+30 x^2 y^2+30 x^2 y+10 x^2+5 x y^4+20 x y^3+30 x y^2+20 x y+5 x+y^5+5 y^4+10 y^3+10 y^2+5 y+1$



You can see that $5x$ is before $y^5$ and so on.


My solution consist in the manual sorting of monomials


OrderedForm = HoldForm[+##] & @@ MonomialList[#][[
Ordering[Total[#] & @@@ CoefficientRules[#], All, GreaterEqual]]] &;

Expand[(x + y + 1)^5] // OrderedForm



x^5+5 x^4 y+10 x^3 y^2+10 x^2 y^3+5 x y^4+y^5+5 x^4+20 x^3 y+30 x^2 y^2+20 x y^3+5 y^4+
10 x^3+30 x^2 y+30 x y^2+10 y^3+10 x^2+20 x y+10 y^2+5 x+5 y+1

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...