For a given function:
Plot[Sqrt[Abs[x]], {x, -Pi, Pi}]
I have the code to draw the function (with its Abs remove), partial sums and cesaro means as:
f[x_] := Sqrt[x]
s[k_, x_] := \frac{2\sqrt{\pi}}{3}+(-Sqrt[2] FresnelS[Sqrt[2] Sqrt[n]] + 2 Sqrt[n] Sin[n \[Pi]])/(n^(3/2) Sqrt[\[Pi]]) Cos[n x], {n, 1, k}]
partialsums[x_] = Table[s[n, x], {n, {4}}];
c[n_, x_] := (1/n) Sum[s[m, x], {m, 0, n - 1}]
Plot[Evaluate[{f[x], partialsums[x], c[4, x]}], {x, -Pi, Pi},
PlotLegends -> {"f(x)=x", "Fourier, 4 terms", "Cesaro, 4 terms"},
PlotStyle -> {{Blue}, {Dashed, Thickness[0.006]}, {Red, Thickness[0.006]}}]
This code fails on my computer and hence I resolve to manual computation.
Updates: It turn out that I can easily solve this issue by removing the k with any number rather than letting it to be indefinite. Although I am not certain the graph is right for k=4 as both graphs(Partial and Cesaro) coincides with each other.
Answer
Maybe
plt = Plot[f[k], {k, 0, 50}, Frame -> True, PlotStyle -> Red,ImageSize -> 300];
dplt = DiscretePlot[cesaro[k], {k, 0, 50}, Frame -> True, PlotRange -> PlotRange[plt],
PlotStyle -> Directive[{Blue, Dashed}], Joined -> True, ImageSize -> 300];
Row[{plt, dplt, Show[plt, dplt]}]
Update: or, perhaps, this:?
dplt2 = DiscretePlot[cesaro[k], {k, 0, 50}, Frame -> True, Filling -> None,
PlotRange -> PlotRange[plt], PlotStyle -> Blue, Joined -> True, ImageSize -> 300];
Row[{plt, dplt2, Show[plt, dplt2]}]
or, using Interpolation
on cesaro[k]
and
intFCsr = Interpolation[Table[{k, cesaro[k]}, {k, 0, 50}]];
Plot[{f[k], intFCsr[k]}, {k, 0, 50}, Frame -> True,PlotStyle -> {Red, Blue}]
Update 2:
intFCsr = Interpolation[Table[{k, cesaro[k]}, {k, 0, 50}]];
intFPrtlSms = Interpolation[Table[{k, part[k]}, {k, 0, 50}]];
Plot[{f[k], intFCsr[k], intFPrtlSms[k]/15}, {k, 0, 50}, ImagePadding -> 45,
Frame -> True, PlotStyle -> {Red, Blue, Black}, ImageSize -> 500,
FrameLabel -> {{Style["f, cesaro", 12], Style["partial sum", 12]},
{Style["k", 12], Style["plot label", 14]}},
FrameTicks -> {{Join[{#, #, {.01, 0}} & /@ Range[0, 4.],
{#, " ", {.0075, 0}} & /@ Range[0.2, 4., .2]],
Join[{#, 15 #, {.01, 0}} & /@ Range[0, 4.],
{#, " ", {.0075, 0}} & /@ Range[0.2, 4., .2]]}, {Automatic, Automatic}}]
Comments
Post a Comment