Skip to main content

Plotting discrete data but not using discreteplot function


For a given function:


Plot[Sqrt[Abs[x]], {x, -Pi, Pi}]

I have the code to draw the function (with its Abs remove), partial sums and cesaro means as:


f[x_] := Sqrt[x]
s[k_, x_] := \frac{2\sqrt{\pi}}{3}+(-Sqrt[2] FresnelS[Sqrt[2] Sqrt[n]] + 2 Sqrt[n] Sin[n \[Pi]])/(n^(3/2) Sqrt[\[Pi]]) Cos[n x], {n, 1, k}]
partialsums[x_] = Table[s[n, x], {n, {4}}];
c[n_, x_] := (1/n) Sum[s[m, x], {m, 0, n - 1}]

Plot[Evaluate[{f[x], partialsums[x], c[4, x]}], {x, -Pi, Pi},
PlotLegends -> {"f(x)=x", "Fourier, 4 terms", "Cesaro, 4 terms"},
PlotStyle -> {{Blue}, {Dashed, Thickness[0.006]}, {Red, Thickness[0.006]}}]

This code fails on my computer and hence I resolve to manual computation.


Updates: It turn out that I can easily solve this issue by removing the k with any number rather than letting it to be indefinite. Although I am not certain the graph is right for k=4 as both graphs(Partial and Cesaro) coincides with each other.



Answer



Maybe


plt = Plot[f[k], {k, 0, 50}, Frame -> True, PlotStyle -> Red,ImageSize -> 300];
dplt = DiscretePlot[cesaro[k], {k, 0, 50}, Frame -> True, PlotRange -> PlotRange[plt],

PlotStyle -> Directive[{Blue, Dashed}], Joined -> True, ImageSize -> 300];
Row[{plt, dplt, Show[plt, dplt]}]

enter image description here


Update: or, perhaps, this:?


 dplt2 = DiscretePlot[cesaro[k], {k, 0, 50}, Frame -> True, Filling -> None, 
PlotRange -> PlotRange[plt], PlotStyle -> Blue, Joined -> True, ImageSize -> 300];
Row[{plt, dplt2, Show[plt, dplt2]}]

enter image description here



or, using Interpolation on cesaro[k] and


 intFCsr = Interpolation[Table[{k, cesaro[k]}, {k, 0, 50}]];
Plot[{f[k], intFCsr[k]}, {k, 0, 50}, Frame -> True,PlotStyle -> {Red, Blue}]

enter image description here


Update 2:


 intFCsr = Interpolation[Table[{k, cesaro[k]}, {k, 0, 50}]];
intFPrtlSms = Interpolation[Table[{k, part[k]}, {k, 0, 50}]];
Plot[{f[k], intFCsr[k], intFPrtlSms[k]/15}, {k, 0, 50}, ImagePadding -> 45,
Frame -> True, PlotStyle -> {Red, Blue, Black}, ImageSize -> 500,

FrameLabel -> {{Style["f, cesaro", 12], Style["partial sum", 12]},
{Style["k", 12], Style["plot label", 14]}},
FrameTicks -> {{Join[{#, #, {.01, 0}} & /@ Range[0, 4.],
{#, " ", {.0075, 0}} & /@ Range[0.2, 4., .2]],
Join[{#, 15 #, {.01, 0}} & /@ Range[0, 4.],
{#, " ", {.0075, 0}} & /@ Range[0.2, 4., .2]]}, {Automatic, Automatic}}]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...