Skip to main content

interpolation - How to restrict InterpolatingFunction to a smaller domain?



How can I reduce the domain of an InterpolatingFunction?


For example, consider if = FunctionInterpolation[x^2, {x, 0, 3}]. Is it possible to define if2 as the restriction of if to {x,1,2}? Not only should the domain change, but if2 should not contain the information of if on $[0,1]$ and $[2,3]$. I've noticed the package InterpolatingFunctionAnatomy but I don't know what methods would be useful here.



Answer



you can do:


FunctionInterpolation[if[x], {x, 1, 2}]

which will actually sample the interpolation function and generate a new one.


Alternately you can extract the data and use Interpolation


Interpolation[
Select[ Transpose[{#[[3, 1]], Flatten[#[[4]]]}] ,

1 <= #[[1]] <= 2 &]] &@if

This second method may not exactly match your desired domain boundaries unless they happened to be sample points on the original interpolation.


In both cases the result will not be precisely the same as the original interpolation.


yet another thing you can do, which seems a bit of a hack. Looking at the FullForm of InterpolatingFunction you see the first argument is the domain, so if you do:


if[[1]] = {{1, 2}}

you will get a warning if you go out of the new bounds (but get the same result as the original)


Edit: this will use the derivatives from the first interpolation in the second:


data = Select[Transpose[{#[[3, 1]], Flatten[#[[4]]]}], 

1 <= #[[1]] <= 2 &] &@if;
Interpolation[{{#[[1]]}, #[[2]], D[if[x], x] /. x -> #[[1]]} & /@ data]

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.