Skip to main content

list manipulation - Implementation of tensor product formula


For the Bézier surface, which owns the following matrix definition:


S(u,v)=mi=0nj=0Pi,jBm,i(u)Bn,j(v)=(Bm,0(u)Bm,m(u))1×(m+1)(P0,0P0,nP1,0P1,nPm,0Pm,n)(Bn,0(v)Bn,1(v)Bn,n(v))(n+1)×1


where, Bn,i(u) is Bernstein basis.


vec1 = {B[0],...,B[m]};
mat = {{P[0,0],...P[0,n]},...,{P[m,0],...P[m,n]}};
vec2 = {B[0],...,B[n]};


bez = vec1.mat1.vec2

However, the Pi,j is the coordinate of a 3D point, which own this style:{x,y,z}. So I cannot use vec1.mat1.vec2 directly.


An alternative method is using Hold[] to unevaluate the coordinate {x,y,z}. Namely, Hold[{x,y,z}]. Lastly, with the help of ReleaseHold[] to evaluate the expression.


vec1 = {B[0],...,B[m]};
mat = Map[Hold,{{P[0,0],...P[0,n]},...,{P[m,0],...P[m,n]}},{2}];
vec2 = {B[0],...,B[n]};

bez = vec1.mat1.vec2 // ReleaseHold


Another way that I came up with is


vec1.mat[[All, All, #]].vec2 & /@ {1, 2, 3}

Comparison


Bernstein[0, 0, u_?NumericQ] := 1
Bernstein[n_, i_, u_?NumericQ] := Binomial[n, i] u^i (1 - u)^(n - i)

BezierSurface2[pts_, u_?NumericQ, v_?NumericQ] :=
Module[{m, n, AllBasis},

{m, n} = Dimensions[pts, 2];
AllBasis =
Function[{deg, u0}, Bernstein[deg, #, u0] & /@ Range[0, deg]];
With[{row = AllBasis[m - 1, u], col = AllBasis[n - 1, v]},
row.Map[Hold, pts, {2}].col // ReleaseHold]
]

BezierSurface1[pts_, u_?NumericQ, v_?NumericQ] :=
Module[{m, n, AllBasis},
{m, n} = Dimensions[pts, 2];

AllBasis =
Function[{deg, u0}, Bernstein[deg, #, u0] & /@ Range[0, deg]];
With[{row = AllBasis[m - 1, u], col = AllBasis[n - 1, v]},
row.pts[[All, All, #]].col & /@ {1, 2, 3}]
]



cpts = Table[{i, j, RandomReal[{-1, 1}]}, {i, 5}, {j, 5}];
ParametricPlot3D[
BezierSurface1[cpts, u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming


ParametricPlot3D[
BezierSurface2[cpts, u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

f = BezierFunction[cpts];
ParametricPlot3D[f[u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

plots


So my question: is there a more efficient method to implement this formula?



Answer




This might help you get an idea:


n = 4;
BlockRandom[SeedRandom[42, Method -> "Legacy"]; (* for reproducibility *)
cpts = Table[{i, j, RandomReal[{-1, 1}]}, {i, n + 1}, {j, n + 1}]];

GraphicsRow[{ParametricPlot3D[BezierFunction[cpts][u, v], {u, 0, 1}, {v, 0, 1},
Evaluated -> True], (* built-in function *)
ParametricPlot3D[Evaluate[Fold[#2.#1 &, cpts, (* using dot-products *)
{BernsteinBasis[n, Range[0, n], u],
BernsteinBasis[n, Range[0, n], v]}]],

{u, 0, 1}, {v, 0, 1}]}]

can you spot any difference?


You can of course replace BernsteinBasis[] with your own Bernstein[]; no need for Hold[] trickery!


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]