Skip to main content

list manipulation - Implementation of tensor product formula


For the Bézier surface, which owns the following matrix definition:


$$\begin{align*} \mathbf S(u,v)&=\sum_{i=0}^m \sum_{j=0}^n \mathbf P_{i,j} B_{m,i}(u) B_{n,j}(v)\\ &=\small \begin{pmatrix}B_{m,0}(u)&\cdots&B_{m,m}(u)\end{pmatrix}_{1\times(m+1)} \begin{pmatrix} \mathbf P_{0,0}&\cdots&\mathbf P_{0,n}\\ P_{1,0}&\cdots&\mathbf P_{1,n}\\\vdots&\vdots&\vdots\\ \mathbf P_{m,0}&\cdots&\mathbf P_{m,n} \end{pmatrix} \begin{pmatrix} B_{n,0}(v)\\B_{n,1}(v)\\ \vdots\\ B_{n,n}(v) \end{pmatrix}_{(n+1)\times 1} \end{align*}$$


where, $B_{n,i}(u)$ is Bernstein basis.


vec1 = {B[0],...,B[m]};
mat = {{P[0,0],...P[0,n]},...,{P[m,0],...P[m,n]}};
vec2 = {B[0],...,B[n]};


bez = vec1.mat1.vec2

However, the $P_{i,j}$ is the coordinate of a 3D point, which own this style:{x,y,z}. So I cannot use vec1.mat1.vec2 directly.


An alternative method is using Hold[] to unevaluate the coordinate {x,y,z}. Namely, Hold[{x,y,z}]. Lastly, with the help of ReleaseHold[] to evaluate the expression.


vec1 = {B[0],...,B[m]};
mat = Map[Hold,{{P[0,0],...P[0,n]},...,{P[m,0],...P[m,n]}},{2}];
vec2 = {B[0],...,B[n]};

bez = vec1.mat1.vec2 // ReleaseHold


Another way that I came up with is


vec1.mat[[All, All, #]].vec2 & /@ {1, 2, 3}

Comparison


Bernstein[0, 0, u_?NumericQ] := 1
Bernstein[n_, i_, u_?NumericQ] := Binomial[n, i] u^i (1 - u)^(n - i)

BezierSurface2[pts_, u_?NumericQ, v_?NumericQ] :=
Module[{m, n, AllBasis},

{m, n} = Dimensions[pts, 2];
AllBasis =
Function[{deg, u0}, Bernstein[deg, #, u0] & /@ Range[0, deg]];
With[{row = AllBasis[m - 1, u], col = AllBasis[n - 1, v]},
row.Map[Hold, pts, {2}].col // ReleaseHold]
]

BezierSurface1[pts_, u_?NumericQ, v_?NumericQ] :=
Module[{m, n, AllBasis},
{m, n} = Dimensions[pts, 2];

AllBasis =
Function[{deg, u0}, Bernstein[deg, #, u0] & /@ Range[0, deg]];
With[{row = AllBasis[m - 1, u], col = AllBasis[n - 1, v]},
row.pts[[All, All, #]].col & /@ {1, 2, 3}]
]



cpts = Table[{i, j, RandomReal[{-1, 1}]}, {i, 5}, {j, 5}];
ParametricPlot3D[
BezierSurface1[cpts, u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming


ParametricPlot3D[
BezierSurface2[cpts, u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

f = BezierFunction[cpts];
ParametricPlot3D[f[u, v], {u, 0, 1}, {v, 0, 1}] // AbsoluteTiming

plots


So my question: is there a more efficient method to implement this formula?



Answer




This might help you get an idea:


n = 4;
BlockRandom[SeedRandom[42, Method -> "Legacy"]; (* for reproducibility *)
cpts = Table[{i, j, RandomReal[{-1, 1}]}, {i, n + 1}, {j, n + 1}]];

GraphicsRow[{ParametricPlot3D[BezierFunction[cpts][u, v], {u, 0, 1}, {v, 0, 1},
Evaluated -> True], (* built-in function *)
ParametricPlot3D[Evaluate[Fold[#2.#1 &, cpts, (* using dot-products *)
{BernsteinBasis[n, Range[0, n], u],
BernsteinBasis[n, Range[0, n], v]}]],

{u, 0, 1}, {v, 0, 1}]}]

can you spot any difference?


You can of course replace BernsteinBasis[] with your own Bernstein[]; no need for Hold[] trickery!


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...