Skip to main content

performance tuning - Improving speed of code computing number of nonrepeating partitions


I need to answer the following for a number of parameters: How many ways can the integer $k$ be written as a sum of $n$ different integers ranging from $1$ to $m$?


My initial attempt was the following function:


NumberOfWays[k_, n_, m_] := 
Count[Map[Length,
Map[DeleteDuplicates,
IntegerPartitions[k, {n}, Range[m]]]],
n];


This works, but becomes very slow as the parameters get big. I then thought I might do it using a generating function and attempted the following:


GenFuncy[m_] := Product[1 + y*x^j, {j, 1, m}];
NumberOfWays2[k_, n_, m_] := Coefficient[GenFuncy[m], x^k*y^n];

Again this works, but surprisingly (to me) it is even slower.


Is there any way I can speed these functions up, or maybe another faster way to do the calculation altogether?



Answer



This seems pretty quick, particularly on larger cases / larger k, e.g. 451, 29, 101 finishes in a few seconds on the loungebook.


N.B. - I have not tested this exhaustively, just thrown together from ideas...



If[Min[#3, #1 - Tr@Range@(#2 - 1)] < 0, 0, 
SeriesCoefficient[QPochhammer[-x y, x, Min[#3, #1 - Tr@Range@(#2 - 1)]],
{x , 0, #1}, {y, 0, #2}]] &[n, k, m]

UPDATE:


This seems to be very fast, particularly on larger cases. n.b.: posted with testing in progress, I'd like to prove correctness, but so far empirical testing matches prior methods, and appears faster than answers prior on large cases...


myDP[n_, k_, m_] := If[n < Binomial[k + 1, 2] || m < k, 0, 
SeriesCoefficient[QBinomial[m, k, q], {q, 0, n - Binomial[k + 1, 2]}]]

For a huge case of {n, k, m} = {5050, 100, 5050} this took a fraction of a second on the loungebook to return the result of 1 (for this case, there would be ~$2.74235\times 10^{68}$ partitions generated for any of the partition massaging methods like the OP's NumberOfWays, making use of these absurd for anything other than minimal cases.) The neat follow-up solution from KennyColnago took (unsure - aborted it after 5 minutes, monitoring progress indicated over an hour would be needed, figure 10X faster or so for both on a workstation...) for the same case - but I'd prefer to perhaps have his benchmark post extended with results on his hardware for a fair comparison.



Update 2: A further optimization, taking advantage of the symmetry of the gaussian polynomial:


myDPc[n_, k_, m_] := 
Module[{mn = Binomial[k + 1, 2], mx = (k - k^2 + 2 k m)/2},
If[mn <= n <= mx && m >= k,
SeriesCoefficient[QBinomial[Min[n - Binomial[k, 2], m], k, q],
{q, 0, If[n > (mn + mx)/2, mx - n, n - mn]}],0]];

On an exhaustive search for all valid n for {k,m}={45,60} this was over 4X faster than myDP, and for large cases (e.g., {n,k,m}={18775, 50, 400} it was over 20,000X faster than myDP.


There's an additional optimization possible that might be advantageous when searching ranges of {n,k,m}: for any given {n,k,m}, by symmetry of the Q-Binomial, there's a dual of {n', k',m} where n' and k' are simple transformations of n and k that has precisely the same polynomial. Memoization on that can about double the performance for such searches.


Update 3 2015/08/20: Added an optimization (in edited myDPc above) for larger k, resulting in over 2 orders of magnitude performance boost to e.g. {n,k,m}={5100,100,5100} and about three orders of magnitude boost to {n,k,m}={12000,154,12000}.



I think I've run out of ideas...


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...