Skip to main content

dynamic - DynamicModule, SaveDefinitions and global functions




Unfortunately, I had not checked stackoverflow, because there, the exact same behavior was already reported. Please see the Q&A "SaveDefinitions considered dangerous".




Up-front, I'm on Ubuntu 12.04 with Mathematica 9.0.1 and let's start with the questions:




  • Should functions which are used in a Manipulate be local to this dynamic cell, when I save them withSaveDefinitions`?

  • Is it OK, that after a kernel-restart Manipulate defines global functions?


I noticed this behavior a while ago when something did not work as I expected it. Here is a small toy example. First we define a function, which (we assume we don't know this now) is not correct and will be fixed later:


f[x_?NumericQ] := "Wrong Implementation";

Now we make a small dynamic environment where we use this function and we save the definitions used there.


Manipulate[f[x] + x, {x, 0, 1}, SaveDefinitions -> True]

Sliding a bit around gives the correct output:



Mathematica graphics


Now, we notice our error in f, because (let's say) f is going to work even when we don't have numeric values. Therefore, we fix the pattern and evaluate


ClearAll[f]
f[x_] := "Correct Implementation!"

this redefinition is instantly shown in the Manipulate, which is kind of weird, because we explicitly told Mathematica to save the definition and let me cite the documentation: SaveDefinition...



is an option to Manipulate and related functions that specifies whether current definitions relevant for the evaluation of the expression being manipulated should automatically be saved.



Mathematica graphics



There is even more, because when you now Quit[] the kernel and then do nothing else that move the slider, you see that now the first definition is used again and the output changes to "Wrong Implementation". This seems fine, because Manipulate finally remembers what is should have saved.


However, this is not what broke my neck. What really took time to debug was that the wrong definition of f is leaked into the global context:


f[3]

(* "Wrong Implementation" *)

The problem back then, when I had this issue, was that although I evaluated the correct definition,


f[x_] := "Correct Implementation!"

the other one was used, because its pattern was more specific.



f[3]

(* "Wrong Implementation" *)

Any comments?




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...