Skip to main content

performance tuning - Is there an NDSolve`ProcessEquations analog for NIntegrate?


NDSolve has an interface for repeatedly solving an equation with different initial conditions without having to analyze the equation and set up the solving algorithm each time. This can improve performance dramatically. For example,


nd = First@NDSolve`ProcessEquations[{y'[t] == -y[t], y[0] == 1}, {y}, t]    
(* NDSolve`StateData[<0.>] *)

solve[y0_] := Module[{}, nd = First@NDSolve`Reinitialize[nd, y[0] == y0];
NDSolve`Iterate[nd, 1]; NDSolve`ProcessSolutions[nd]]

Timing[NDSolve[{y'[t] == -y[t], y[0] == #}, y, {t, 0, 1}]&/@Range[0.001, 1, 0.001]]//First

(* 0.527396 *)

Timing[solve /@ Range[0.001, 1, 0.001]] // First
(* 0.250309 *)

Is there an analogous interface to NIntegrate that would allow me to process the integral once, then do integrations using the same integration method (as chosen by NIntegrate) repeatedly using different constants in the integrand and/or different limits of integration?



Answer



NIntegrate performs a certain symbolic processing of the integrand to detect discontinuities, singularities, to determine the method to choose and so on.


If you know the integrand pretty well, the way to reduce the overhead is to set the method explicitly, set its SymbolicProcessing suboption to 0 (to allow to time spent on the preprocessing), and to add points of discontinuities to the path explicitly.


This can make a significant difference in timing:



In[66]:= Do[
NIntegrate[Piecewise[{{x^2, x <= 1}}, 1/1 + x], {x, 0, 1, 2},
Method -> {"GaussKronrodRule",
"SymbolicProcessing" -> 0}], {10^3}] // AbsoluteTiming

Out[66]= {1.542154, Null}

In[67]:= Do[
NIntegrate[
Piecewise[{{x^2, x <= 1}}, 1/1 + x], {x, 0,

2}], {10^3}] // AbsoluteTiming

Out[67]= {15.063506, Null}

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....