Skip to main content

Solving a list of equation which takes so much time


I try to solve a list of equation in a following way but it Mathematica solves equations after 30-40 minutes or don't solve them at all. The functions that I use are ;


u[c_] := (c^(1 - σ) - 1)/(1 - σ)
k[m_] := m^α

The equation that I try to solve numerically is ;


r[m_, s_] :=  pricemit - u'[(χ s + k[m])/β] k'[m]

with the calibration


paramFinal1 = {σ -> 2.1, β -> 0.8, pricemit -> 0.0005, α -> 0.5, χ -> 0.025};


I proceeded in the following two ways but none of them worked ;


sol[i_] := Solve[r[m, i] == 0 /. paramFinal1, m]
Table[sol[i], {i, 1, 15}]

The second way I have tried did not work neither ;


sol11 = Table[r[m, i] /. paramFinal1, {i, 1, 10}]
sol12 = Solve[sol11==0 /.paramFinal1]

These two operations take so much time or put Mathematica on "Running..." status.



How can I express this operations that Mathematica could handle easily ? Any hints, suggestions are appreciated. Thanks in advance.


Edit : When I solve according to s instead of m, the system is solved easily but I try to list the corresponding m values for s on a range between 0 and 15 (or some other number instead of 15)



Answer



Perhaps you want this


u[c_] := (c^(1 - σ) - 1)/(1 - σ)
k[m_] := m^α
r[m_, s_] := pricemit - (D[u[c], c] /. c -> (χ s + k[m])/β) D [k[m], m]
paramFinal1 = {σ -> 2.1, β -> 0.8, pricemit -> 0.0005, α -> 0.5, χ -> 0.025};
sol[i_] := FindRoot[r[m, i] == 0 /. paramFinal1, {m, 1}]
Table[sol[i], {i, 15}]


(*
{{m -> 63.437}, {m -> 63.1679}, {m -> 62.8997}, {m -> 62.6323},
{m -> 62.3657}, {m -> 62.1}, {m -> 61.8351}, {m -> 61.5711},
{m -> 61.3079}, {m -> 61.0456}, {m -> 60.7841}, {m -> 60.5234},
{m -> 60.2635}, {m -> 60.0045}, {m -> 59.7463}}
*)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]