Skip to main content

programming - Efficient priority queues?


I'm trying to figure out how to transfer the concept of a priority queue to the functional world. Searches have turned up some implementations that use Append and other expense list copying techniques. I'm guessing there is a better way.


An example of what I am trying to solve is consider the products of all pairs of N digit numbers in descending value order. For small N I can do something like...


Reverse[
Cases[
SortBy[
Flatten[
Table[{i, j, i*j}, {i, 1, 9}, {j, 1, 9}],
1],

Last[#] &],
{i_, j_, k_} /; i <= j]
]

Alternative solutions to the problem in particular are welcomed, but I am really looking for a generic answer of how to apply the priority queue concept to the functional world.



Answer



This is going to be transcript of Roman E. Maeder's priority queue code with any updates I can find to make to take advantage of functions added since he wrote it.


I believe I am within right to copy it here for noncommercial purposes.


Refactor v0.2 -- any bugs are almost certainly my own.


BeginPackage["PriorityQueue`"]


MakeQueue::usage = "MakeQueue[pred] creates an empty priority queue with
the given ording predicate. The default predicate is Greater."
CopyQueue::usage = "CopyQueue[q] makes a copy of the priority queue q."
DeleteQueue::usage = "DeleteQueue[q] frees the storage used for q."
EmptyQueue::usage = "EmptyQueue[q] is True if the priority queue q is empty."
EnQueue::usage = "EnQueue[a, item] inserts item into the priority queue q."
TopQueue::usage = "TopQueue[q] returns the largest item in the priority queue q."
DeQueue::usage = "DeQueue[q] removes the largest item from the priority queue q.
It returns the item removed."

PriorityQueue::usage = "PriorityQueue[...] is the print form of priority queues."

Begin["`Private`"]

SetAttributes[queue, HoldAll]
SetAttributes[array, HoldAllComplete]

makeArray[n_] := array @@ ConstantArray[Null, n]

MakeQueue[pred_:Greater] :=

Module[{ar,n=0},
ar = makeArray[2];
queue[ar, n, pred]
]

CopyQueue[queue[a0_,n0_,pred_]] :=
Module[{ar=a0,n=n0},
queue[ar, n, pred]
]


EnQueue[q:queue[ar_,n_,pred_], val_] :=
Module[{i,j},
If[ n == Length[ar], (* extend (double size) *)
ar = Join[ar, makeArray @ Length @ ar] ];
n++;
ar[[n]] = val; i = n;
While[ True, (* restore heap *)
j = Quotient[i, 2];
If[ j < 1 || pred[ar[[j]], ar[[i]]], Break[] ];
ar[[{i,j}]] = {ar[[j]], ar[[i]]};

i = j;
];
q
]

EmptyQueue[queue[ar_,n_,pred_]] := n == 0

TopQueue[queue[ar_,n_,pred_]] := ar[[1]]

DeQueue[queue[ar_,n_,pred_]] :=

Module[{i,j,res=ar[[1]]},
ar[[1]] = ar[[n]]; ar[[n]] = Null; n--;
j = 1;
While[ j <= Quotient[n, 2], (* restore heap *)
i = 2j;
If[ i < n && pred[ar[[i+1]], ar[[i]]], i++ ];
If[ pred[ar[[i]], ar[[j]]],
ar[[{i,j}]] = {ar[[j]], ar[[i]]}; ];
j = i
];

res
]

DeleteQueue[queue[ar_,n_,pred_]] := (ClearAll[ar,n];)

queue/:Normal[q0_queue] :=
Module[{q=CopyQueue[q0]},
Reap[While[!EmptyQueue[q], Sow @ DeQueue[q]]; DeleteQueue[q];][[2,1]]
]


Format[q_queue/;EmptyQueue[q]] := PriorityQueue[]
Format[q_queue] := PriorityQueue[TopQueue[q], "\[TripleDot]"]

End[]

EndPackage[]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]