Skip to main content

front end - Difference between ParentList and Inherited


In this answer Carl Woll uses the ParentList symbol to inherit old input aliases when adding a new one:


CurrentValue[EvaluationNotebook[], 

InputAliases] = {"0x" ->
RowBox[{InterpretationBox[
StyleBox["\"0\"", ShowStringCharacters -> False],
Function[Null,
FromDigits[StringDrop[ToString@Unevaluated@#, 1], 16],
HoldAll]], "\[InvisibleApplication]", "\[InvisibleSpace]",
StyleBox["x", ShowAutoStyles -> False]}], ParentList};
CurrentValue[EvaluationNotebook[], InputAliases] /. Rule[a_, _] :> a

{"0x", ParentList}


And we can still use the all the basic built-in aliases


On the other-hand, we can get the same result using Inherited:


CurrentValue[EvaluationNotebook[], InputAliases] = Inherited;
CurrentValue[EvaluationNotebook[],
InputAliases] = {"0x" ->
RowBox[{InterpretationBox[
StyleBox["\"0\"", ShowStringCharacters -> False],
Function[Null,
FromDigits[StringDrop[ToString@Unevaluated@#, 1], 16],

HoldAll]], "\[InvisibleApplication]", "\[InvisibleSpace]",
StyleBox["x", ShowAutoStyles -> False]}], Inherited};
CurrentValue[EvaluationNotebook[], InputAliases] /. Rule[a_, _] :> a

{"0x", Inherited}

And we can, again, use the all of the built-in aliases, but if we look at the AbsoluteCurrentValues for the first case:


CurrentValue[EvaluationNotebook[], 
InputAliases] = {"0x" ->
RowBox[{InterpretationBox[

StyleBox["\"0\"", ShowStringCharacters -> False],
Function[Null,
FromDigits[StringDrop[ToString@Unevaluated@#, 1], 16],
HoldAll]], "\[InvisibleApplication]", "\[InvisibleSpace]",
StyleBox["x", ShowAutoStyles -> False]}], ParentList};
AbsoluteCurrentValue[EvaluationNotebook[], InputAliases] /.
Rule[a_, _] :> a

{"0x", "intt", "dintt", "sumt", "prodt", "dt", "ia", "cbrt", "surd", \
"ket", "bra", "braket", "delay", "grad", "del.", "delx", "del2", \

"notation", "notation>", "notation<", "symb", "infixnotation", \
"addia", "pattwraper", "madeboxeswraper"}

And the second:


CurrentValue[EvaluationNotebook[], InputAliases] = Inherited;
CurrentValue[EvaluationNotebook[],
InputAliases] = {"0x" ->
RowBox[{InterpretationBox[
StyleBox["\"0\"", ShowStringCharacters -> False],
Function[Null,

FromDigits[StringDrop[ToString@Unevaluated@#, 1], 16],
HoldAll]], "\[InvisibleApplication]", "\[InvisibleSpace]",
StyleBox["x", ShowAutoStyles -> False]}], Inherited};
AbsoluteCurrentValue[EvaluationNotebook[], InputAliases] /.
Rule[a_, _] :> a

{"0x", Inherited}

We see that even though they are operationally similar, the AbsoluteCurrentValue result is different.


So I guess my question is, how do ParentList and Inherited differ outside of this small difference?



ParentList is obviously more scoped to list-type constructs, but why does it need to exist at all?




Extra Info:


Per Albert Retey's comment I checked whether either responded differently to upstream changes:


StyleSheetEdit["MyStyle1" -> "Input",
{
InputAliases -> {"0x" -> "\"\[SadSmiley]\"", ParentList}
},
"MakeCell" -> True
];

CellPrint[Cell[BoxData[""], "MyStyle1"]];
StyleSheetEdit["MyStyle2" -> "Input",
{
InputAliases -> {"0x" -> "\"\[SadSmiley]\"", Inherited}
},
"MakeCell" -> True
];
CellPrint[Cell[BoxData[""], "MyStyle2"]];
CurrentValue[EvaluationNotebook[], InputAliases] = {"a" -> "\"b\""};


Both cells behaved entirely the same



Answer



Its name is misleading, unfortunately, because it can be very useful.


A better name would be something around ParentSequence/ParentArguments. Here is one example:


CurrentValue[EvaluationNotebook[], TaggingRules] = {"old" -> "value"};
cell = EvaluationCell[];

CurrentValue[cell, TaggingRules] = {ParentList, "new" -> "value"};
AbsoluteCurrentValue[cell, TaggingRules]



{"old" -> "value", "new" -> "value"}

CurrentValue[cell, TaggingRules] = {Inherited, "new" -> "value"};
AbsoluteCurrentValue[cell, TaggingRules]


{{"old" -> "value"}, "new" -> "value"}

So in this case you really want to use it.



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...