Skip to main content

cluster analysis - Finding connected components in an array


I have an $w\times h$ array with non-negative integers.


I wish to partition the set of coordinates $(c,r)$ with $1\leq c \leq w$ and $1\leq r \leq h$, in subsets, so that each subset corresponds to a cluster of the same value in the array.


Two coordinates are neighbouring if they either are on top of another, or one is down-left of the other. This corresponds to finding clusters in a parallelogram.


belisarius was nice to provide a picture:


enter image description here


I have some code to find one connected cluster in an array (I call it gt):


FloodFillExtractTile[gt_, {sr_, sc_}] := 
Module[{r, c, toExplore, visited = {}},
toExplore = {{sr, sc}};

While[Length@toExplore > 0,
(* Pop *)
{r, c} = Last@toExplore;
toExplore = Most[toExplore];
AppendTo[visited, {r, c}];
(* Down-left *)

If[c > 1 && r < h &&
gt[[r + 1, c - 1]] == gt[[r, c]] && !
MemberQ[visited, {r + 1, c - 1}],

AppendTo[toExplore, {r + 1, c - 1}];
];
(* Down-right *)

If[ r < h &&
gt[[r + 1, c]] == gt[[r, c]] && ! MemberQ[visited, {r + 1, c}],
AppendTo[toExplore, {r + 1, c}];
];
(* Up-right *)


If[r > 1 && c < w &&
gt[[r - 1, c + 1]] == gt[[r, c]] && !
MemberQ[visited, {r - 1, c + 1}],
AppendTo[toExplore, {r - 1, c + 1}];
];
(* Up-left *)

If[ r > 1 &&
gt[[r - 1, c]] == gt[[r, c]] && ! MemberQ[visited, {r - 1, c}],
AppendTo[toExplore, {r - 1, c}];

];
];
Return@visited;
];

Then FloodFillExtractTile[gtp, {1, 1}] gives the component connected to the upper left hand corner. However, this method feels ugly, and extending it to all components feels even uglier.


I was looking at Gather, but the problem is that it wants all points in a cluster to be equal, see for example Gather dependency on list order?


Edit: So this is the type of arrays I am looking at. The $6$, the $3$'s, the $2$'s and the $0$'s are in one component respectively, but there are two components with $1$'s.


Being neighbours means being adjacent down-left, down-right, up-left and up-right.


Now, the rows is stored just like regular rows in a rectangular matrix, so that is why this translates to a bit strange criteria for being neighbours. GT-pattern



This is the best code I have so far, first extract points with the same value, then do connected-component analysis on those parts.


GetGTTiles[gtp_] := 
Module[{testSame, testEdge, h, w, pts, sameClusters, getEdges,
tiles},
{h, w} = Dimensions[gtp];
pts = Join @@ Table[{r, c}, {r, h}, {c, w}];
testSame[{r1_, c1_}, {r2_, c2_}] := (gtp[[r1, c1]] ==
gtp[[r2, c2]]);
testEdge[{r1_, c1_}, {r2_,
c2_}] := (gtp[[r1, c1]] ==

gtp[[r2, c2]]) &&
((c1 == c2 &&
Abs[r1 - r2] <= 1) || (c1 == c2 - 1 &&
r1 == r2 + 1) || (c1 == c2 + 1 && r1 == r2 - 1));
sameClusters = Gather[pts, testSame];
getEdges[clust_] :=
Join @@ Outer[If[testEdge[#1, #2], #1 -> #2, Sequence @@ {}] &,
clust, clust, 1];
tiles =
Join @@ (ConnectedComponents[Graph@getEdges[#]] & /@ sameClusters);

Return@tiles;
];

This is the output I expect for the example given (5 clusters found):


{{{1, 1}}, {{1, 2}, {2, 1}}, 
{{1, 3}, {2, 3}, {3, 2}, {4, 1}, {3, 1}, {2, 2}},
{{1, 4}},
{{2, 4}, {3, 4}, {4, 4}, {5, 4}, {5, 3}, {4,3}},
{{3, 3}, {4, 2}, {5, 2}, {5, 1}}}


EDIT: So this is the final code, based on belisarius solution:


GTTiles[gtp_List] := Module[{fromEuclidean, toEuclidean,
getOneTile, elements, elmPos, pts, tile, tiles},

(* This is used to changefrom different coordinate systems. *)

fromEuclidean[{r_, c_}] := {r, (c - r)/2 + 1};
toEuclidean[{r_, c_}] := {r, 2 c + r - 2};

getOneTile[pts_List, maxDist_?NumericQ] := Module[{f},

f = Nearest[pts];
FixedPoint[
Union@Flatten[f[#, {Infinity, maxDist}] & /@ #, 1] &, {First@
pts}]];

elements = Union @@ gtp;
elmPos = (toEuclidean /@ Position[gtp, #]) & /@ elements;
(* This is really strange code. *)
tiles = Flatten[Flatten[
Reap[NestWhile[Complement[#,

Sow@getOneTile[#, N@Sqrt@2]] &, #, # != {} &]][[2]],
1] & /@ elmPos, 1];
tiles = Map[fromEuclidean, tiles, {2}];
Return@tiles;
];

Answer



l1 = {{6, 3, 2, 1}, {3, 2, 2, 0}, {2, 2, 1, 0}, {2, 1, 0, 0}, {1, 1, 0, 0}};
l = Riffle[#, ""] & /@ l1;
els = Union @@ l;
par = MapIndexed[PadRight[PadLeft[#1, #2[[1]] + Length@#1 - 1, ""],

Length@l + Length@#1 - 1, ""] &, l];
eachElm = Position[par, #] & /@ els;
getOneCluster[pts_List, maxDist_?NumericQ] :=
Module[{f},
f = Nearest[pts];
FixedPoint[Union@Flatten[f[#, {Infinity, maxDist}] & /@ #, 1] &, {First@pts}]];
clusters =
Flatten[Flatten[
Reap[NestWhile[
Complement[#,

Sow@getOneCluster[#, N@Sqrt@2]] &, #, # != {} &]][[2]], 1] & /@ eachElm, 1];
Grid[par,
ItemStyle -> {Automatic, Automatic, Flatten@MapIndexed[#1 -> Hue[#2[[1]]/3] &,
clusters, {2}]}]

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...